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Data Matters but...
• Performance of a machine learning model often depends 

on the availability of data


• A large quantity of useful data may be generated on and 
held by multiple distributed parties 


• Extra management and business compliance overhead, 
privacy concerns, or even regulation and judicial issues
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• How can we use the distributed features without 
exposing them?



Traditional Distributed Machine 
Learning: Speedup and Scalability
To speed up training over vast data or handling big model 
that cannot fit in a single machine's memory [Mu Li et al, 
OSDI 2014]
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Data samples with full features are distributed in order to speed up training 



Distributed Feature Sharing
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Goals

Train a Joint Machine Learning Model with 
Distributed Features that 

• Better prediction performance than local data only and 
approaching to the performance of centralized training


• Minimize information leakage


• Efficient in both large numbers of features and samples
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Our Contributions

Design, implement and evaluate the feature distributed 
machine learning (FDML) system


• A composition model 


• Stochastic gradient decent based training algorithm


• Convergence guarantee


• Evaluation over real data trace
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Feature Distributed Machine 
Learning (FDML) Model
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Feature Distributed Machine 
Learning (FDML) Model
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Feature Distributed Machine 
learning System(FDML) Model

Prediction Model:

Training

Problem:

!9

minimize
x

1

N

NX

i=1

l

 
MX

m=1

↵m(xm, Di
m)

!
,

subject to xm 2 Xm,m = 1, . . . ,M.

f(x, {Di}) = �

✓ MX

m=1

↵m(xm, Di
m)

◆



!10

Stale Synchronized SGD

Gradient to local variables:
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Stale Synchronized SGD

Server: For pulling request:

If time index is within threshold:


return 


For push request:
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converges in 


T being the total 
number of 
iterations

O(1/
p
T )



System Highlights
• Sample and feature preparation


• Distribute samples with user identity (User ID, phone number, etc)


• Link user features to samples in different local parties


• Sampling and alignment


• Random shuffling and align the samples in the same order in 
different parties


• Differential Privacy Technique


• Perturb the local prediction with controlled random noise 
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Experiment Dataset

• 5,000,000 samples indicating whether a user will 
download an app or not


• 8,700 (sparse) features in total, among which 7,000 
features come from Tencent MyApp, 1700 features are 
from other two apps
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Experiment Scenarios

• Logistic regression (LR) and a two layered fully connected 
neural network (NN)


• Local: only use 7,000 local features from MyApp 


• Centralized: collect all the 8,700 features from all three 
apps to a central server


• FDML: use FDML system to train a joint model on all 
8,700 features distributed in three apps
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Experiment Results
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Table 1: The performance on Tencent MyApp data.
Algorithm Train loss Test loss Test AUC Time(s)
LR local 0.1183 0.1220 0.6573 546
LR centralized 0.1159 0.1187 0.7037 1063
LR FDML 0.1143 0.1191 0.6971 3530
NN local 0.1130 0.1193 0.6830 784
NN centralized 0.1083 0.1170 0.7284 8051
NN FDML 0.1101 0.1167 0.7203 4369

The smaller, the better for  loss and auc



Conclusion

Learning privately over distributed features is an 
important problem 


Feature Distributed Machine Learning (FDML) 
system can significantly outperforms the model 
with local features while keeping the distributed 
features private
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Future Works
• More robust and efficient algorithm for dense and high 

dimensional local features 


• Y. Hu, et al. "Learning Privately over Distributed Features: 
An ADMM Sharing Approach." arXiv preprint arXiv:
1907.07735 (2019).


• Support more feature interactions between parties, such as 
factorization machine model


• Richer "symmetric feature interactions"


• Communication reduction
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Thank you! 
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