
FDML: A Collaborative
Machine Learning Framework

for Distributed Features

Yaochen Hu1, Di Niu1, Jianming Yang2, Shengping Zhou2

1 ECE, University of Alberta
2 PCG, Tencent

Data Matters but...
• Performance of a machine learning model often depends

on the availability of data

• A large quantity of useful data may be generated on and
held by multiple distributed parties

• Extra management and business compliance overhead,
privacy concerns, or even regulation and judicial issues

!2

• How can we use the distributed features without
exposing them?

Traditional Distributed Machine
Learning: Speedup and Scalability
To speed up training over vast data or handling big model
that cannot fit in a single machine's memory [Mu Li et al,
OSDI 2014]

!3

Feature 1 LabelFeature 2 … Feature nFeature 1 LabelFeature 2 … Feature nFeature 1 LabelFeature 2 … Feature nParty 1 Samples

Feature 1 LabelFeature 2 … Feature nFeature 1 LabelFeature 2 … Feature nFeature 1 LabelFeature 2 … Feature nParty 2 Samples

Feature 1 LabelFeature 2 … Feature nFeature 1 LabelFeature 2 … Feature nFeature 1 LabelFeature 2 … Feature nParty 3 Samples

Global
Model

Data samples with full features are distributed in order to speed up training

Distributed Feature Sharing

!4!4

Insurance
history

Personal
statistics

Insurance Company Government Angency

Patients record

Hospitals

App review and
download
behaviour

Web browsing
interests

Tencent MyApp Tencent QQ Browser

App usage

Tencent Mobile
 Safeguard

Goals

Train a Joint Machine Learning Model with
Distributed Features that

• Better prediction performance than local data only and
approaching to the performance of centralized training

• Minimize information leakage

• Efficient in both large numbers of features and samples

!5

Our Contributions

Design, implement and evaluate the feature distributed
machine learning (FDML) system

• A composition model

• Stochastic gradient decent based training algorithm

• Convergence guarantee

• Evaluation over real data trace

!6

Feature Distributed Machine
Learning (FDML) Model

!7

Output

Local Result Local Result

Input feature
set 1

Input feature
set 2

Input feature
set 3

Local Result • Composition
Model

• Arbitrary
"smooth" local
model

!8

Output

Local Result Local Result

Input feature
set 1

Input feature
set 2

Input feature
set 3

Local Result

f(x,Di) = �

✓ MX

m=1

↵m(xm, Di
m)

◆
Prediction Model:

D =

2

6664

D1
1 D1

2 · · · D1
M

D2
1 D2

2 · · · D2
M

...
...

. . .
...

DN
1 DN

2 · · · DN
M

3

7775

Data:

Variables:
x = (x>

1 , · · · , x>
m, · · · , x>

M)>

!8

Feature Distributed Machine
Learning (FDML) Model

!9

Feature Distributed Machine
learning System(FDML) Model

Prediction Model:

Training

Problem:

!9

minimize
x

1

N

NX

i=1

l

MX

m=1

↵m(xm, Di
m)

!
,

subject to xm 2 Xm,m = 1, . . . ,M.

f(x, {Di}) = �

✓ MX

m=1

↵m(xm, Di
m)

◆

!10

Stale Synchronized SGD

Gradient to local variables:

Update: xt+1
m := xt

m � ⌘t
@Ft(x)

@xm

@Ft(x)

@xm
= l

0
✓
�

✓ MX

m=1

↵
m(xm, D

t
m)

◆◆
�
0
✓ MX

m=1

↵
m(xm, D

t
m)

◆
@↵

m(xm, D
t
m)

@xm

:= H

✓ MX

m=1

↵
m(xm, D

t
m)

◆
@↵

m(xm, D
t
m)

@xm
,

!10

Loss: Ft(x) = l

MX

m=1

↵m(xm, Dt
m)

!

!11

Stale Synchronized SGD

Server: For pulling request:

If time index is within threshold:

return

For push request:

 Collect and update local cache

MX

m=1

↵m(xm, Dt
m)

Local party:

xt+1
m := xt

m � ⌘t
@Ft(x)

@xm

Evaluate and push it to the server

Pull

Update the weights

↵m(xm, Dt
m)

MX

m=1

↵m(xm, Dt
m)

!11

converges in

T being the total
number of
iterations

O(1/
p
T)

System Highlights
• Sample and feature preparation

• Distribute samples with user identity (User ID, phone number, etc)

• Link user features to samples in different local parties

• Sampling and alignment

• Random shuffling and align the samples in the same order in
different parties

• Differential Privacy Technique

• Perturb the local prediction with controlled random noise

!12

Experiment Dataset

• 5,000,000 samples indicating whether a user will
download an app or not

• 8,700 (sparse) features in total, among which 7,000
features come from Tencent MyApp, 1700 features are
from other two apps

!13

Experiment Scenarios

• Logistic regression (LR) and a two layered fully connected
neural network (NN)

• Local: only use 7,000 local features from MyApp

• Centralized: collect all the 8,700 features from all three
apps to a central server

• FDML: use FDML system to train a joint model on all
8,700 features distributed in three apps

!14

Experiment Results

!15

Table 1: The performance on Tencent MyApp data.
Algorithm Train loss Test loss Test AUC Time(s)
LR local 0.1183 0.1220 0.6573 546
LR centralized 0.1159 0.1187 0.7037 1063
LR FDML 0.1143 0.1191 0.6971 3530
NN local 0.1130 0.1193 0.6830 784
NN centralized 0.1083 0.1170 0.7284 8051
NN FDML 0.1101 0.1167 0.7203 4369

The smaller, the better for loss and auc

Conclusion

Learning privately over distributed features is an
important problem

Feature Distributed Machine Learning (FDML)
system can significantly outperforms the model
with local features while keeping the distributed
features private

!16

Future Works
• More robust and efficient algorithm for dense and high

dimensional local features

• Y. Hu, et al. "Learning Privately over Distributed Features:
An ADMM Sharing Approach." arXiv preprint arXiv:
1907.07735 (2019).

• Support more feature interactions between parties, such as
factorization machine model

• Richer "symmetric feature interactions"

• Communication reduction

!17

Thank you!

!18

Yaochen Hu
PhD Candidate

University of Alberta

Email: yaochen@ualberta.ca

