
FDML: A Collaborative Machine Learning Framework for Distributed Features
Yaochen Hu1, Di Niu1, Jianming Yang2, Shengping Zhou2

1 ECE, University of Alberta; 2 PCG, Tencent

Introduction

The effectiveness of a machine learning model depends on the
availability of high-quality features. An important scenario is to
collaboratively learn from distributed features, where multiple
parties may possess different features about a same sample, but
do not wish to share these features (e.g. sensitive user features)
with each other.
 We aim to improve the predictive power at one party by
leveraging additional features from another domain or party,
without requiring any party to share its features. We design,
implement and extensively evaluate a practical Feature Distributed
Machine Learning (FDML) system based on real-world datasets.

Design Goals

To make the solution practical with the most conservative
assumption on information sharing, we bear the following goals:
• To minimize information leakage, no party should share its

feature set. Neither should any of its local model parameters be
communicated to other parties.

• The prediction made by the joint model should outperform the
prediction made by each isolated model trained only with a
single party's feature set, provided that such improvement from
joint features also exists in centralized training.

• The joint model produced should approach the model trained in
a centralized manner if all the features were collected centrally.

• The system should be efficient in the presence of both large
numbers of features and samples.

FDML Model
Consider a system of m different parties, each party holding
different aspects about the same training samples. Let {(ξ1i, ξ2i, ...,
ξmi), yi},∀i, represents the set of n training samples, ξji being the
features of the ith sample located on jth party, and yi being the label.
We adopt a specific class of composite model that has the form

Where σ(·) is some continuous differentiable function, ⍺j(·) is local
prediction model with parameter xj, as illustrated in Fig. 1.

Output

Local Result Local Result

Input feature
set 1

Input feature
set 2

Input feature
set 3

Local Result

Fig. 1 Illustrating FDML model, where the local predictions, each depending
on the local model on a party, are aggregated into a final output

p(x, ⇠) = �

✓ mX

j=1

↵j(xj , ⇠j)

◆
,

<latexit sha1_base64="AP8ggwq0AWuX8VKOmxcfDAfRUoc=">AAACR3icbVDPSxtBGJ2N1dr4K9VjL0ODkICEXRUsBSHYS48pGBWy2eXbyZfNxJnddWZWEpb8d1689ua/0IsHRXp0subQqg8GHu+9b+abF2WCa+O6d05l6cPyysfVT9W19Y3Nrdrn7TOd5ophl6UiVRcRaBQ8wa7hRuBFphBkJPA8uvwx98+vUWmeJqdmmmFfQpzwIWdgrBTWgqwx2aP+hDfpMfU1jyX4EY/jhq9zGRbjY28WSOqDyEZAg3FjEozLeDBulrnmni8gQlHg1feRvV+F801AhTIdoJiFtbrbckvQt8RbkDpZoBPWfvuDlOUSE8MEaN3z3Mz0C1CGM4Gzqp9rzIBdQow9SxOQqPtF2cOM7lplQIepsicxtFT/nShAaj2VkU1KMCP92puL73m93Ay/9QueZLnBhL08NMwFNSmdl0oHXCEzYmoJMMXtrpSNQAEztvqqLcF7/eW35Gy/5R209n8d1tsnizpWyRfylTSIR45Im/wkHdIljNyQP+SBPDq3zr3z5Px9iVacxcwO+Q8V5xl2UbE8</latexit>

Experiment
Datasets: (1) Tencent MyApp dataset contains 5M labeled
samples indicating whether a user will download an app or not.
Each sample contains around 8.7K (sparse) features, among
which around 7K features come from Tencent MyApp itself, while
the remaining 1.7K features are from the other two apps. (2)
a9a, a classical census dataset, where the prediction task is to
determine whether a person makes over 50K a year. There are
48,842 samples, each with 124 features. 32,661 samples are
training data and 16,281 samples are testing data. We split the
124 features into two sets of 67 and 57.
Scenarios: We run both a logistic regression (LR) and a two
layered fully connected neural network (NN) under three
different training schemes for both data sets:
• Local: only use the 7K local features from MyApp or the 67

features of a9a to train a model.
• Centralized: collect all the 8.7K features to a central server or

using all the 124 features in a9a and train the model using the
standard mini-batched SGD.

• FDML: use FDML system to train a joint model for app
recommendation based on all 8.7K features distributed in
three apps or train the a9a classification model on all 124
features from two different parties, without centrally collecting
data.

Results: As shown in Table 1 and Table 2, FDML can closely
approximate centralized training (the latter collecting all data
centrally), while significantly outperforming the models trained
only based on the local features.

Table 1: The performance on Tencent MyApp data.
Algorithm Train loss Test loss Test AUC Time(s)
LR local 0.1183 0.1220 0.6573 546
LR centralized 0.1159 0.1187 0.7037 1063
LR FDML 0.1143 0.1191 0.6971 3530
NN local 0.1130 0.1193 0.6830 784
NN centralized 0.1083 0.1170 0.7284 8051
NN FDML 0.1101 0.1167 0.7203 4369

Table 2: The performance on a9a data.
Algorithm Train loss Test loss Test AUC Time(s)
LR local 0.3625 0.3509 0.8850 41
LR centralized 0.3359 0.3247 0.9025 45
LR FDML 0.3352 0.3246 0.9026 99
NN local 0.3652 0.3484 0.8864 53
NN centralized 0.4008 0.3235 0.9042 57
NN FDML 0.4170 0.3272 0.9035 110

Algorithm and System
Train the model by solving the optimization problem with loss function
L(·)

For each party j, the gradient w.r.t the local parameter xj is

where i(t) is the index of sample drawn at iteration t. Only the global
prediction and other local data is needed for local parameter update.
Gradient Decent Algorithm
Local party: (1) evaluate the local prediction and push it to central
server; (2) get the global prediction from central server; (3) evaluate
the gradient and update the local parameters.
Central server: (1) upon push request, update the corresponding
global prediction; (2) upon pull request, return the global prediction.
• It is shown that this algorithm converges in , T being the

number of iterations.
System Implementation Highlights
• Sample indexing, alignment and shuffling.
• Support stale synchronous update.
• Privacy is further protected by perturbing the local predictions.

O(1/
p
T)

minimize
x

1

n

nX

i=1

L(x; ⇠i, yi)

H(global predictions)
@↵

j(xj
, ⇠

j
i(t))

@xj

