
Server Selection and Topology Control
for Multi-Party Video Conferences

Shuopeng Zhang1 Di Niu2 Yaochen Hu2 Fangming Liu3

1University of Waterloo, Canada
2University of Alberta, Canada

3Huazhong University of Science and Technology, China

ABSTRACT
This paper proposes new methods for multi-server place-
ment and topology control in multi-party video conferences.
Given a large server pool available from CDN infrastruc-
tures and datacenter networks, our lightweight methods can
rapidly determine the network topology and select the best
physical servers to deploy virtualized server instances on,
with the objective of minimizing the mean end-to-end de-
lay between clients. We propose D-Grouping, a ping-based
clustering algorithm, which is used in combination with con-
vex optimization to determine the network topology and fine-
tune server selection. To verify the proposed methods, we
present extensive simulation studies based on the ping traces
collected from 518 PlanetLab nodes as well as real-world
experiment results based on a prototype implementation.

1. INTRODUCTION
Multi-party conferencing, e.g., Google Hangouts, Skype

group video call, is an important real-time application
that enables geographically distributed clients to com-
municate with each other. Given the stringent require-
ments on quality of service (QoS), to support live in-
teraction in such applications, the data stream of each
client needs to be transmitted to all other clients with
low end-to-end delays, at a reasonably high source rate.

Existing multi-party conferencing solutions mainly adopt
two types of architectures, namely peer-to-peer (P2P)
and centralized servers. In a typical P2P conferencing
system of n clients, each client needs to send a copy
of its data stream to n − 1 other participants, making
the outgoing link highly congested. A centralized-server
approach relieves the burden of client outgoing links by
gathering all client’s data using a server called multi-
point control unit (MCU) [6], and letting the server
streams the processed data to other clients. Although
the use of centralized servers potentially increases through-
put, it may compromise delay performance as compared
to a full-mesh P2P topology with direct connections be-
tween clients, especially when clients are geographically
spread out.

To reduce end-to-end latencies while supporting rea-
sonably high source rates, in this paper, we propose

to utilize multiple servers that are available from the
large cloud of proprietary (e.g., Skype can use Microsoft
servers) or third-party CDN nodes and datacenters. To
shift upload burden away from clients, we can always
let each client upload its data stream to some server in
the cloud. Since server nodes are usually much better
provisioned than hosts in residential networks, we let
the servers form a full-mesh to minimize the server-to-
server latency.

The key question is — given the client locations and
a server number constraint, where the servers should be
placed and to which server each client should upload its
stream in order to reduce the overall end-to-end laten-
cies between clients? This hard combinatorial problem
involves both assignment and placement (which interact
with each other), and is apparently impractical to solve
on the dense graph formed by the clients and hundreds
or thousands of available server nodes. An alternative
solution is to embed all the nodes into a delay space us-
ing a network coordinate system like Vivaldi [2] based
on pairwise pings of all servers and clients. Given the
computed coordinates of all nodes, we can conveniently
partition the clients using heuristics like k-means, and
then compute the optimal server locations in the de-
lay space under the found partition. However, as the
server pool scales to a large size, there is clearly a high
overhead of computing the coordinates of all nodes even
with Vivaldi.

In this paper, we propose a lightweight practical solu-
tion to the problem mentioned above only based on the
RTTs between the few clients and some geo-information.
We propose D-Grouping, a novel clustering algorithm
that only uses the pairwise pings between clients to
partition them, which unlike k-means, does not rely
on any projected coordinates or locations. Based on
the resulted partition and topology, we further use var-
ious convex optimization schemes to fine-tune the ideal
server location for each group to minimize the total
length of all end-to-end paths in the topology, and map
ideal server locations to real servers based on certain
criteria. In spite of the wide belief that geo-distances
are only weakly correlated to Internet latencies [2, 4],

1

C

C

S

C

S

S

C

C

C

(a) Our multi-server topologies

C

C C

C

S S

S S

5

2

5

2

0

0 ideal, only for

illustration 0

(b) The full-mesh best solution

C

C C

C

S

5

2

1

2.5

2.69

(c) A 1-server solution

C

C C

C

S S

5

2

1

1

√
2

3

(d) A 2-server solution

Figure 1: An illustration of our (idealized) multi-server topology, where multiple servers are chosen
from the cloud to serve each session. C: client; S: server; Arrows: data flow paths between clients.

our experimental results show the surprising result that
our simple lightweight scheme can greatly reduce the
mean end-to-end delay over one-server solutions and
even achieve a comparable performance to the heavy-
weight solution based on network coordinates.

We perform extensive simulations based on the ping
traces that we have collected from 518 PlanetLab nodes
over a 20-day period. We have also implemented a pro-
totype multi-party conferencing system based on Apache
Thrift in 7, 000 lines of C++ code and deployed the
prototype on PlanetLab nodes to evaluate our algo-
rithms in the real world, as well as to study the in-
tricate relationship between source sending rates and
packet-level latencies. Our packet-level experiments re-
veal that not only do our multi-server approach out-
perform the single-server solution, but its latency per-
formance is also less sensitive to source rate increases
than that of the single server, with processing overhead
considered.

2. A MULTI-SERVER TOPOLOGY
We adopt a class of multi-server topologies illustrated

in Fig. 1(a) to reduce delay while supporting reasonably
high throughput. In this topology, every client is only
connected to one server and no other host. The servers
form a full mesh. Each client just sends one copy of its
data stream to its own server, shifting upload bottleneck
away from clients. For each server S, if it receives data
from a client C, the data is forwarded to all the other
clients and other servers connected to itself (server S).
If server S receives data from other servers, the data
is forwarded only to the clients directly connected to
S. In other words, a client connected to S transmits a
packet to another client connected to S in two hops via
S, and transmits a packet to another client connected
to another server S′ in three hops via S and S′. We
let the servers form a full mesh because servers are usu-
ally well connected in content delivery infrastructures or
datacenter networks, which also minimizes the transfer
latencies between any pair of servers.

We illustrate the benefit of multiple servers in terms
of delay in Fig. 1(b), Fig. 1(c) and Fig. 1(d) in an ide-
alized toy example of a 4-client conferencing session. If
we use only one server, the mean end-to-end delay is

5.39 (omitting the unit for illustration purpose only).
On the other extreme, if we place 4 servers, each close
to a client and let the servers form a full mesh, the mean
end-to-end delay is minimized to 4.13. To strike a bal-
ance between the mean delay achieved and the number
of servers used (which is directly related to the cost),
Fig. 1(d) illustrates a solution that achieves a mean end-
to-end delay of 4.83 with only 2 servers. By adjusting
the choice of server locations, we can effectively reduce
the end-to-end delays between all clients, without caus-
ing any upload bottlenecks at the clients.

3. ALGORITHMS
Given a set of geographically distributed clients and

a server number constraint m, in our protocol, we need
to decide 1) where the m (virtualized) servers should
be placed and 2) to which server each client connects.
Since servers are directly connected, the above is no
different from finding 1) an m-partition of clients and
2) the m server locations for the m partitions, respec-
tively. We propose a three-step procedure to minimize
the mean end-to-end delay between all pairs of clients.
First, we propose D-Grouping (delay-based grouping)
to cluster the clients only using pings between the few
clients. Given the computed partition, we use convex
optimization to find the ideal geographic server loca-
tions that minimize the total length of all client-to-client
geographic paths in the topology formed by clients and
servers. Finally, we map each ideal server location to
one of the several closest physical server candidates that
really achieves the minimum mean end-to-end delay.

3.1 D-Grouping based on PINGs

Unlike k-means which uses client coordinates (or po-
sitions) to partition them, we partition clients using the
pair-wise round-trip times (RTTs) between them, which
can be easily retrieved by PING before the session starts.
On the other hand, just like k-means, given the desired
number of groups, D-Grouping aims to put clients with
a low pairwise RTT into a same group. The intuition
is that if we group “close” clients together, more traffic
can be handled locally within each group, with the hope
of reducing the mean end-to-end delay.

Suppose that C = {c1, ..., cn} is a set of n clients.

2

Denote G = {G1, . . . , Gm} as the m groups to be com-
puted, where each Gi is a subset of C and every client in
C belongs to exactly one Gi ∈ G. D-Grouping has two
steps, namely initial grouping and iterative grouping.

Initial Grouping: suppose we are given the pair-
wise pings of clients and m empty groups. In initial
grouping, we assign each client into the group for which
it has the lowest RTT to the polar in that group, where
a polar is a normal client used as a reference point. Sup-
pose the number of groups m is greater than one, we
first set the pair of clients with the largest RTT as two
polars. Then, if m is greater than two, we will choose
the non-polar client that is furthest away from the ex-
isting polars as the next polar, i.e., the client that has
the largest sum of RTTs to existing polars. The above
is repeated until the number of polars generated equals
to the number of groups. Once polars are determined,
we classify each non-polar client into the polar’s group
to which the client has the lowest RTT.

Iterative Grouping: next, we iteratively adjust
each client into the “closest” group such that it has
the minimum average RTT to the clients in that group,
as described in Algorithm 1.

Algorithm 1 D-Grouping

while termination condition is not met, do
For each client ci ∈ C, move ci into a group

such that ci has the minimum average delay to the
clients in that group. . Complexity O(n2)
end while

The above algorithm is lightweight with each itera-
tion only involving O(n2) evaluations of RTTs which
can be conveniently collected before the session starts.
In practice, the termination condition is met when a cer-
tain number of iterations T is reached or when grouping
result no longer changes. In simulation, D-Grouping
can yield stable partition of 12 clients in only 5 itera-
tions for 92% of the trials.

3.2 Server Location Optimization
Once proper grouping is done, we need to choose m

servers for the m groups, which is a challenging problem
given the large graph of available servers. An alterna-
tive is to obtain the coordinates of all the servers and
clients in a delay space, and perform a convex optimiza-
tion to search for the ideal server locations in the delay
space. However, embedding the hosts still involves sig-
nificant overhead. Considering the correlation between
geographic distance and network delay [2,7], we propose
several geo-based schemes to search for ideal server lo-
cations, which turn out to even have comparable per-
formance with those done in a delay space.

Geo-Center: choose the geographic center of each
client group as the ideal server location for that group.

Local Convex Optimization: in each group, the

ideal server location is chosen to minimize the sum of
geographic distances to all the clients in that group.
Let X = {x1, ..., xn} be the geo-locations of n clients.
In each group Gi, the ideal server location L∗i is

L∗i = arg min
Li

∑
xj∈Gi

Dg(Li, xj),

where Dg represents the geographic distance between
two locations on the earth.

Global Convex Optimization: we use convex op-
timization to find all the m ideal server locations L∗ =
{L∗1, . . . , L∗m} that jointly minimizes the total geographic
length of all end-to-end paths between clients, i.e.,

(n−1)
∑
Gi∈G

∑
xj∈Gi

Dg(Li, xj)+

m−1∑
i=1

m∑
j=i+1

Dg(Li, Lj)|Gi|·|Gj |,

where |Gi| is the number of clients in group Gi.
Finally, the ideal server locations are mapped to real

servers using one of the following methods:
Naive Server Search (NaiSS): choose the server

geographically closest to Li as the server of group Gi.
Local Server Search (LclSS): For each group Gi,

choose p servers geographically closest to Li as can-
didate servers. Then choose the server that has the
smallest sum of RTTs to all the clients within group Gi

as the server for Gi. To measure RTTs, the pair-wise
pings between each candidate server to all the clients in
its group should be performed. Thus, pn pings are per-
formed in total. If the pings are performed in parallel
by clients, only p pings need to be performed per client.

Global Server Search (GlbSS): For each group
Gi, choose p servers geographically closest to Li as can-
didate servers. Then choose the set of m servers from
all pm combinations of candidate servers that minimizes
the mean end-to-end delay. In addition to the pings col-
lected in Local Server Search, now we also need to col-
lect the pair-wise pings between candidate servers from
different groups, that is mp(m−1)p/2 pings, or (m−1)p
pings performed per candidate server in parallel.

4. TRACE-DRIVEN SIMULATIONS
We provide simulation results based on a large set of

ping traces to evaluate our methods, compared against
the state-of-the-art one-server solution and a method
with much larger overhead in a delay space assuming
network coordinate embedding is available through Vi-
valdi. We also draw insights on how many server should
be used in a conference session.

We continuously collected the pair-wise pings of 518
PlanetLab nodes during a 20-day period. with the geo-
graphic distribution of the nodes shown in Fig. 2. The
OS of each node is either Fedora 8 (Linux 2.6.32-20)
or Fedora 14 (Linux 2.6.32-36). Everyday each node
pinged all other nodes for 50 times. In total, we have

3

518 Nodes Dataset

Figure 2: The locations of 518 PlanetLab nodes.

collected 15.9 GB traces. In the simulations, we choose
the median ping of each pair of nodes as the delay esti-
mate of the pair, and the end-to-end delay on a certain
path is calculated by summing up the RTTs of all the
edges on it divided by 2.

Note that the mean end-to-end delay of different clients
may have a huge difference depending on the geographic
distribution of clients. For example, the mean end-to-
end delay of four clients with 2 in Asia and 2 in North
America is much larger than that of 4 clients all in
North America. Therefore, to evaluate a scheme’s per-
formance, we use the ratio of the mean end-to-end delay
of this scheme over that of the full-mesh direct connec-
tion, which we refer to as performance ratio). We use
p = 3 candidate servers for Local Server Search and
Global Server Search. For a given number n of clients,
we run 1000 independent simulations for each method,
each randomly choosing n clients from 518 nodes (the
unchosen nodes will act as the available server pool),
and obtain the average performance for each method.

Fig. 3 shows the performance of different combina-
tions of proposed algorithms for 12 clients. Firstly, us-
ing convex optimization to tune server locations brings
salient benefits. Comparing the all the methods us-
ing D-Grouping and Global Server Search but differ-
ent ideal server location optimization methods, we no-
tice that Global Convex Optimization for server loca-
tions has the best performance, followed by Local Con-
vex Optimization, which are much better than Geo-
Center. Secondly, the delay can be effectively reduced
by introducing 3 candidate servers during the mapping
phase, using Local Server Search and Global Server
Search. For example, if we check all the methods using
D-Grouping and Geo-Center, we observe that Global
Server Search is a bit better than Local Server Search,
and much better than Naive Server Search. Overall,
the method of using D-Grouping + Global Convex Op-
timization + Global Server Search is the best method
that incurs the lowest delay, although it is more com-
plex than its local counterpart.

We compare the performance of a one-server (geo-
center) solution, delay-space solution via Vivaldi, and
three of our methods for 12 clients in Fig. 4. The delay-
space approach uses Vivaldi to embed clients into a 5-D
delay space (network coordinate system), uses k-means

1 2 3 4 5 6 7 8 9
1

1.2

1.4

1.6

1.8

Number of Servers

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

D−Grp + Geo Ctr + NaiSS
D−Grp + Geo Ctr + LclSS
D−Grp + Geo Ctr + GlbSS
D−Grp + Lcl Cvx + LclSS
D−Grp + Lcl Cvx + GlbSS
D−Grp + Glb Cvx + LclSS
D−Grp + Glb Cvx + GlbSS

Figure 3: The mean end-to-end delay (normal-
ized by the full-mesh mean delay) of different
methods for 12 clients.

1 2 3 4 5 6 7 8 9
1

1.2

1.4

1.6

1.8

2

Number of Servers
P

e
rf

o
rm

a
n

c
e

 R
a

ti
o

One Server + Geo Ctr + NaiSS
k−means(Geo Coord) + Geo Ctr + NaiSS
D−Grouping + Geo Ctr + NaiSS
k−means(DS) + Glb Cvx(DS)+ GlbSS(DS)
D−Grouping + Glb Cvx + GlbSS

Figure 4: The mean end-to-end delay (normal-
ized by the full-mesh mean delay) for one server,
the delay-space method via Vivaldi and our
methods for 12 clients. DS: delay-space method.

to divide clients into groups, and then uses Global Con-
vex Optimization to find the set of ideal server locations
in the delay space directly. After that, real servers are
selected by using Global Server Search also performed
in the delay space directly. The first of our methods is a
naive benchmark method which uses k-means to divide
clients into groups based on their geographic locations,
and our second method uses D-grouping to partition
clients. Both select a server closest to the geographic
center of each group as the server for that group (Geo-
Center + Naive Server Search). Our third method in
this figure uses D-Grouping, Global Convex Optimiza-
tion for server locations, and Global Server Search.

Firstly, we notice that all multi-server methods are
better than the one-server (geo-center) solution when
the number of servers is greater than 2. However, when
only 2 servers are allowed, the performance of some
methods is worse than one server. The reason is that the
benefits of using multi-servers cannot offset all the in-
accuracies introduced, including mapping errors in the
server search, and the mismatch between geo-distances
and network distances, etc. Secondly, we observe that
D-Grouping, as a delay-based method, is always bet-
ter than k-means performed on geographic coordinates.
Furthermore, we find that D-Grouping + Global Con-

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Number of Servers per Client

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

1 Server
2 Servers
3 Servers
4 Servers
5 Servers

Figure 5: The mean end-to-end delay (normal-
ized by the full-mesh mean delay) vs. the num-
ber of servers shared per client with our best
method for 4—20 clients and 1—5 servers.

vex Optimization + Global Server Search, although boldly
utilizing geo-information in its last 2 steps, has compa-
rable performance to the delay-space-based method via
Vivaldi, yet without having to collect the pings of all
available servers or having to embed nodes into a delay
space.

Furthermore, Fig. 5 shows the delay performance as
the number of servers shared per client changes for our
best method: D-Grouping + Global Convex Optimiza-
tion + Global Server search. Complying to the in-
tuition, the delay decreases as the number of servers
shared per client increases for 4—20 clients. However,
it is interesting to note that when the number of servers
per client is fixed, the more servers used, the lower the
delay. Furthermore, the marginal benefit of increas-
ing the number of servers per client actually decreases,
leading to a convex-shaped trend.

Finally, Table 1 shows the time consumption of some
selected algorithms for 12 clients on a 2.3 GHz quad-
core (i7-3615QM) processor. We observe that Global
Convex Optimization consumes the most of the time in
the scheme. Note that it only takes about 3 seconds
to compute the best 6 servers for 12 clients, which is a
large participation already for today’s multiparty con-
ferences. Even adding the online ping collection time
(performed in D-Grouping and the server search (map-
ping) phase in parallel), the total session preparation
time will not exceed several seconds.

5. PROTOTYPE IMPLEMENTATION
To verify the real-world performance of the proposed

methods, we used the Apache Thrift framework and
the Boost library to develop an asynchronous multi-
threaded packet communication module in 2,000 lines
of C++ code. And Thrift generated about 5,000 lines
of C++ code. We deployed this conferencing system
on PlanetLab nodes. In our experiments, the frequency
at which each client sends packets to its corresponding
server is set to 300 packets/second, where the source

Servers 1 2 3 4 5 6
D-Grouping 0 2.3 2.7 3.3 4.0 4.4

Glb Convex Opt 1.2 189 564 1,092 1,850 2,689
Glb Server Search 0.8 68.8 87.9 127 225 525

Total (ms) 2.0 260 654 1,223 2,079 3,219

Table 1: Time consumption (ms) breakdown of
different algorithms for 12 clients.

1 2 3 4
20

22

24

26

28

30

Number of Servers

M
ill

is
e
c
o
n
d
s

Mean end−to−end delays

Implementation
Simulation

(a) Implementation (1 kbps)
v.s. simulation

1 100 200 300 400 500
20

25

30

35

40

45

50

Source Rates (kbps)

M
ill

is
e

c
o

n
d

s

Mean end−to−end delays

1 Server
2 Servers
3 Servers
4 Servers

(b) Implementations at dif-
ferent source rates

Figure 6: The mean end-to-end delays in imple-
mentation at various source rates for 6 clients.

rate is controlled by tuning the packet size: sourcerate =
packetsize× frequency. The payload in each packet con-
tains random characters. We aim to measure the real
packet-level end-to-end delays achieved under different
methods at different source rates.

5.1 Measuring End-to-End Packet Delays
Since it is hard to synchronize the clocks on different

computers, the delay between clients (on the order of
ms) cannot be measured by simply recording the send-
ing time on the sender and the receiving time on the
receiver. We propose an indirect method to measure
the end-to-end delay of each packet. Suppose client A is
sending packets to another client B via some servers. At
the very moment before A sends out a packet, it starts
a timer. When the packet eventually reaches B, B will
send a ping packet directly to the sender A. When A
receives the ping packet, it stops its timer and record
the time span Tcircle, which is the end-to-end delay of
the packet from A to B plus the one-way ping time
from B to A. When B gets the reply of the ping from
A, it records the round trip time RTTAB . Therefore,
the end-to-end delay from A to B can be evaluated by
Tcircle − RTTAB/2. In our implementation, each client
measures the end-to-end delay to all other clients once
every 300 packets.

5.2 Real-World Experiments
We randomly select 6 PlanetLab nodes as clients and

use our best method, namely D-grouping (ping-based)
+ Global Convex Optimization (geo-based) + Global
Server Search (ping-based), to output the best server
nodes, as the server number varies from 1 to 4. Then, we
deploy our distributed communication systems on these
6 client nodes as well as on the selected server nodes,

5

and measure real end-to-end delays between clients.
Fig. 6(a) shows the performance comparison between

simulation and implementation. To eliminate the influ-
ence of source rates on latency , here we deliberately set
the source rate to be 1 kbps. Note that as the number
of servers increases, the real delay (ms) in the imple-
mentation drops at a similar pace to that of the simu-
lation (which estimates delays by summing up RTTs).
The real delay is only slightly worse than the simulated
result due to the existence of queuing delays and pro-
cessing (CPU) delays.

Fig. 6(b) illustrates the change of the mean end-to-
end delays as the source rates of clients increase. When
the number of servers is 2, 3 and 4, the mean end-to-
end delays only increases slightly as the source sending
rate increases from 1 kbps all the way to 500 kbps at
each source (which can support sufficiently high video
quality). However, in the one-server solution, as the
source rate increases, the mean end-to-end delays has
a dramatic increase, which surges from 443 ms to 574
ms as the source rate changes from 1 kbps to 500 kbps.
The reason is that the server uploading burden increases
with fewer servers. For example, in the toy example of
Fig. 1(c) and Fig. 1(d), suppose each of the 4 clients is
about to send a packet to all other clients. In Fig.1(c),
the server has to collect the 4 packets and send them
out for 12 times. However in Fig.1(d), every server col-
lects 4 packets but only sends them out for 8 times. As
a result, using multi-servers relieves both the network
and CPU burdens at each server, leading to dramati-
cally less increase in processing and queuing delays as
throughput grows.

6. RELATED WORK
Video conferencing has been extensively studied in

the context of P2P networks [1,5]. These works seek to
optimize the streaming rates of all the peers subject to
network bandwidth constraints in a utility maximiza-
tion framework. Recent work uses the cloud to enhance
the performance of video conference sessions. Airlift [3]
uses inter-datacenter networks to relay traffic and pro-
cess data streams in video conferencing. It maximizes
the total throughput in multiple conference sessions by
choosing the optimal way to deliver and relay packets
in the cloud, subject to end-to-end delay constraints.
In contrast, our work focuses on minimizing the end-to-
end delays in an individual conference session.

Our work is related to [6], which also uses multi-
servers, called a Virtual Mixer, to reduce delay in video
conferencing. In particular, it tries to minimize either
the average or the maximum end-to-end delay using a
heuristic based on Steiner tree optimization performed
on a graph of servers and clients. However, this heuris-
tic is not scalable to a graph of thousands of servers.
In contrast, our simple algorithms optimize the mean

end-to-end delay in a geometric problem instead of on
a graph, and easily scale to any number of servers.

Network coordinate (NC) system is an efficient mech-
anism for Internet latency estimation. Vivaldi [2] is a
representative distributed NC system, and is deployed
in many well-known Internet systems, e.g., Azureus Bit-
Torrent [4]. Measurements [2,7] show that there is some
correlation between the pairwise delay and pairwise geo-
distance of two hosts, which supports the feasibility of
our server location optimization without knowing infor-
mation about delays to all the servers. In experiments,
our simple method performs well even without resorting
to the delay-space embedding.

7. CONCLUDING REMARKS
This paper studies the placement of multi-servers and

topology control in multi-party video conferencing. We
propose D-Grouping to group clients, assign each group
a server and use optimization to fine-tune server loca-
tions with the objective of reducing end-to-end delays.
We evaluate our methods based on ping traces collected
from 518 PlanetLab nodes and show that our proposed
methods have comparable performance to full network
coordinate embedding in a delay space, yet with much
lower overhead. Experiments based on our prototype
system further suggests that not only do multi-servers
reduce delay over the one-server industrial state of the
art, but they can also support higher throughput in
practice with reasonable end-to-end packet delays.

8. REFERENCES
[1] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and

J. Li. Celerity: A low- delay multi-party
conferencing solution. In Proc. of ACM
Multimedia, 2011.

[2] F. Dabek, R. Cox, F. Kaashoek, and R. Morris.
Vivaldi: A decentralized network coordinate
system. In Proc. of ACM SIGCOMM, 2004.

[3] Y. Feng, B. Li, and B. Li. Airlift: Video
conferencing as a cloud service using
inter-datacenter networks. In Proc. of IEEE ICNP,
2012.

[4] J. Ledlie, P. Gardner, and M. Seltzer. Network
coordinates in the wild. In Proc. of NSDI, 2007.

[5] C. Liang, M. Zhao, and Y. Liu. Optimal
bandwidth sharing in multiswarm multiparty p2p
video-conferencing systems. IEEE/ACM Trans.
Networking, 19(6):1704–1716, 2011.

[6] J. Liao, C. Yuan, W. Zhu, and P. A. Chou. Virtual
mixer: Real-time audio mixing across clients and
cloud for multi-party conferencing. In Proc. of
IEEE ICASSP, 2012.

[7] V. N. Padmanabhan and L. Subramanian. An
investigation of geographic mapping techniques for
internet hosts. In Proc. of ACM SIGCOMM, 2001.

6

