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ABSTRACT

Graph Convolutional Networks (GCNs) are a powerful approach for
learning graph representations and show promising results in various
applications. Despite their success, they are usually limited to shal-
low architectures due to the vanishing gradients, over-smoothing,
and over-squashing problems. As Convolutional Neural Networks
benefit tremendously from stacking very deep layers, recently tech-
niques such as various types of residual connections and dense con-
nections are proposed to tackle these problems and make GCNs go
deeper. In this work, we further study the problem of designing
deep architectures for GCNs. Firstly, we introduce the Higher Or-
der Graph Recurrent Networks (HOGRNs), which can unify most
existing architectures of GCNs. Then we show that ResGCN and
DenseGCN are special cases of HOGRNs. To enjoy the benefits
from both residual connections and dense connections and compen-
sate for the drawbacks from each other, we propose Dual Path Graph
Convolutional Networks (DPGCNs), which exploit a new topology
of connection paths internally. In DPGCNs, we maintain both a
residual path and a densely connected path while learning the graph
representations. Extensive experiments on OGB datasets demon-
strate superior performances of the proposed DPGCNs over com-
petitive baseline methods on the large-scale graph learning tasks of
node property prediction and graph property prediction.

Index Terms— Graph Convolutional Networks, Network Ar-
chitecture Design, Graph Representation Learning

1. INTRODUCTION

Graph Convolutional Networks (GCN5s) are a powerful deep learning
tool for graph-structured data and have been gaining a lot of attention
in recent years. GCNs and their variants [1, 2, 3] have demonstrated
to be valuable in a wide range of applications, including modelling
proteins for drug discovery [4], social network analysis [5], recom-
mendation systems [6], point clouds classification and segmentation
[7], and computer vision [8].

Despite the huge success of GCNs, most of them are usually
limited to shallow architectures. For examples, GCN [1] and GAT
[3] achieve their best performance at 2-layer on the datasets of ci-
tation networks. These shallow architectures lack the ability to ex-
tract long-range information from the high-order neighbours. Some
applications such as molecular property prediction usually require
long-range information, because chemical properties of a molecule
may depend on the combination of atoms at its opposite sides [9].
Therefore, deeper architectures of GCNs are needed to capture such
long-range information in these applications. However, stacking
more layers into a GCN may lead to several problems, including
the vanishing gradient, over-smoothing [10] and over-squashing [11]
problems. Over-smoothing [10] is a problem that as the number of
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layers in a GCN increases, the output node features may tend to con-
verge to the same vector and become indistinguishable. The phe-
nomenon of over-squashing [11] is caused by a information bottle-
neck in which as the number of layers increases, information from
the exponentially-growing neighbours is compressed into fixed-size
vectors.

Recently, several works of various residual connections are pro-
posed to tackle the above problems. Borrowing ideas from Convo-
Iutional Neural Networks (CNNs), ResGCN [12] leverages residual
connections and dilated convolutions to train very deep GCN archi-
tectures. DeeperGCN [13] proposes novel generalized aggregation
functions and a pre-activation version of residual connections to reli-
ably train very deep GCNs. GCNII [14] is proposed to leverage ini-
tial residual connections and identity mapping to train deep GCNs.
These works empirically demonstrate that residual connections can
relieve the over-smoothing and vanishing gradient problems. Adding
residual connections can ensure that there exists a deep GCN achiev-
ing at least the same performance as its shallow counterpart does: the
shallow layers of the deep GCN are copied from the shallow GCN,
and the other layers of the deep GCN are identity mappings [15, 14].
In addition, residual connections encourage the feature re-usage and
thus reduce the feature redundancy [16]. Adding an identity map-
ping to the propagation function can also improve the expressive
power of GCNs. However, adding residual connections may still
suffer from the over-squashing problem as the number of layers in
the GCN increases.

In addition to residual connections, various dense connec-
tions are recently proposed to tackle the over-smoothing and over-
squashing problems. JKNet [17] leverages dense skip connections
to combine all node feature vectors from the previous layers to pre-
serve the locality of the final node representations. DenseGCN [12]
exploits dense connectivity among different GCN layers, which can
improve information flows in the GCN. There are several advantages
of dense connections as well. Dense connections can flexibly lever-
age different neighborhood ranges to enable better structure-aware
representations and preserve the locality of the node representations.
By combining all node feature vectors from the previous layers,
dense connections relieve the problem of over-smoothing, because
only the parts from the deep layers tend to converge to the same
vector. Dense connections can also alleviate the over-squashing
problem. As the number of layers increases, the length of the out-
put node feature vectors increases as well. This can reduce the
information bottleneck caused by compressing information from the
exponentially-growing neighbours into fixed-size vectors. More-
over, dense connections encourage to explore new features from
previous layers’ outputs but may suffer from high feature redun-
dancy [16].

In this work, inspired by Dual Path Networks [16] from com-
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Fig. 1. The illustrations of the network architectures of ResGCN and
DenseGCN.

puter vision, we further study the problem of designing deep archi-
tectures for GCNs. Firstly, we introduce the Higher Order Graph
Recurrent Networks (HOGRNs) which can unify most existing ar-
chitectures of GCNs. Then we show that ResGCN and DenseGCN
are special cases of HOGRNs when the aggregation functions across
layers of HOGRNS are a summation operator and a concatenation
operator, respectively. To enjoy the benefits from both residual
connections and dense connections and relieve the drawbacks from
each other, we propose Dual Path Graph Convolutional Networks
(DPGCNs) which present a new topology of connection paths in-
ternally. In DPGCNs, we use two kinds of aggregation functions
across layers so that we maintain both a residual path and a densely
connected path. DPGCNs are the first GCN architecture leverag-
ing both residual connections and dense connections at the same
time. Extensive experiments on Open Graph Benchmark (OGB)
datasets clearly demonstrate superior performances of our proposed
DPGCNSs over all the competitive baseline methods on the large-
scale graph learning tasks of node property prediction and graph
property prediction.

2. PRELIMINARIES

2.1. Notations

A graph G is defined as a tuple of two sets G = (V, &), where
V = {v1,v2, -+ ,vn}is the set of nodes and £ C ¥V xV is the set of
edges. For an undirected graph, e;; = (v;,v;) € £ is an undirected
edge between nodes v; and v;; for a directed graph, e;; is a directed
edge pointing from the node v; to the node v;. We associate each
node v € V with a node feature vector h, € R” where D is the
number of dimensions of node feature vectors. Hence the graph G
is associated with a set of node feature vectors H = {h,|v € V}.

We define a general graph mapping F' as a mapping which maps
a graph G = (V, E) associated with a set of node feature vectors
H to a graph G’ = (V,E’) associated with a set of node feature
vectors H', i.e. G' = F(G). Graph convolutional networks such
as GCN [1], MPNN [2], GAT [3], GIN [18], GCNII [14] as well as
their corresponding graph convolutional operators are kinds of graph
mappings.

2.2. Residual Connections in GCNs

Designing deep architectures of GCNs still remains an open prob-
lem. Borrowing the ideas from the huge success of ResNet [15],

ResGCN [12] is proposed to make GCNs go deeper. Specifically,
the graph mapping at the /-th layer in ResGCN [12] is formulated as
the following:
G = Fi(Gh) + Gy
: (€]
= Z Fi(Gr) + Go
k=0

where F(-) is a graph convolutional operator at k-th layer. After
G, is transformed by Fj(-), a node-wise addition operating on the

concatenation S€LS Of node feature vectors is performed to obtain G;4+1. Figure 1(a)

graphically shows the network architecture of ResGCN.

2.3. Dense Connections in GCNs

Inspired by DenseNet [19], DenseGCN [12] adapts a similar idea
to GCNs in order to exploit information flows from different layers.
Specifically, the graph mapping at the [-th layer in DenseGCN [12]
is formulated as the following:

Giy1 =T(Gi, Fi(Gy))

= T(Go, Fo(Go). Fy(G), - Fi(c)) P
where Fj(-) is a graph convolutional operator at k-th layer, k =
0,1,---,1, and T is a node-wise concatenation operator operating
on the sets of node feature vectors that densely fuses the input graph
G with the outputs of all intermediate layers of the GCN. Figure
1(b) graphically shows the network architecture of DenseGCN.

3. HIGHER ORDER GRAPH RECURRENT NETWORKS

We first introduce the Higher Order Graph Recurrent Networks
(HOGRNSs). The update rule of HOGRN:S is as the following:

G = J* (€ (Go, F§ (Go), F (Gh), -+ FE1(Ger))) - @)

where k is the index of the current step, G denotes the graph pro-
duced by the HOGRN:Ss at the ¢-th step, and G is the input graph. For
t=0,1,---  k— 1, Ff(-) is a differentiable graph mapping which
takes the graph produced at the ¢-th step as input and outputs a trans-
formed graph at the current step k. &* is the node-wise aggregation
function across layers at the k-th step operating on the sets of node
feature vectors. £* can be a summation operator, a concatenation
operator, a weighted summation operator, an attention operator, a
pooling operator, etc. J* (+) is a differentiable graph mapping which
transforms the aggregated graph to the output graph at the current
step k.

Then we show that ResGCN is a special case of HOGRNs. If
taking Fy*(-) = Fy(-) fort = 0,1,--- ,k — 1, the aggregation func-
tion across layers &* as the summation operator, and .J k() as an
identity graph mapping, Eqn.(3) will become the same as Eqn.(1).
Therefore, ResGCN is a special case of HOGRNS.

Finally, we show that DenseGCN is a special case of HOGRNSs.
If taking Ff*(-) = Fi(-) for t = 0,1,--- ,k — 1, the aggrega-
tion function across layers £ as the concatenation operator 7', and
J*(-) as an identity graph mapping, Eqn.(3) will become the same
as Eqn.(2). Therefore, DenseGCN is a special case of HOGRNS.

4. DUAL PATH GRAPH CONVOLUTIONAL NETWORKS

Residual connections in GCNs can relieve the over-smoothing and
vanishing gradient problems, improve the expressive power of
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Fig. 2. The illustrations of the network architectures of a plain DPGCN and a carefully designed more efficient DPGCN. € denotes the
aggregation function across dual paths which can be a node-wise concatenation operator or a node-wise summation operator operating on the

sets of node feature vectors.

GCNs, and encourage the feature re-usage and thus reduce the fea-
ture redundancy, but may suffer from the over-squashing problem.
On the other hand, dense connections can flexibly leverage different
neighborhood ranges to enable better structure-aware representa-
tions, preserve the locality of the node representations, relieves the
over-smoothing and over-squashing problems, and encourage to
explore new features from previous layers’ outputs, but may suffer
from high feature redundancy.

Based on the above analysis, to enjoy the benefits from both
residual connections and dense connections and relieve the draw-
backs from each other, we propose Dual Path Graph Convolutional
Networks (DPGCNs) which present a new topology of connection
paths internally. In DPGCNS5, we use two kinds of aggregation func-
tions across layers so that we maintain both a residual path and a
densely connected path. We formulate DPGCNs as follows:

Ggense — Fgense (ggense (GO, Gl’ e ,Gk—l)) s (4)
G = Fy™ (61" (Go, Gy -, Ga)) 5)
G = &u9(GR"°, Gi™°), ©)
Gi = F99(G299), (N

where £7¢°¢ and £7°° are the aggregation functions across layers
of the densely connected path and the residual path at k-th layer re-
spectively, F™*¢(.) and F°*(-) are differentiable graph mappings
of the densely connected path and the residual path at k-th layer re-
spectively, £,99 is the aggregation function across dual paths at k-th
layer, and F}99(-) is a differentiable graph mapping which takes the
aggregated graph G77? as input and outputs the transformed graph
G}, at k-th layer. ££°™*¢ can be a node-wise concatenation operator,
while £;,°° can be a node-wise summation or weighted summation
operator. ;%Y can be a node-wise concatenation or summation op-
erator.

Figure 2 graphically shows two versions of DPGCNs. In the
more efficient version of DPGCN in Figure 2(b), the two aggrega-
tion functions across layers £2°™"*¢ and £1°° include split operations.
Thus the growth rate of the densely connected path in Figure 2(b) is
smaller than that in Figure 2(a). As a result, the number of parame-
ters in Figure 2(b) is smaller than that in Figure 2(a) when they have

the same number of layers.

5. EXPERIMENTS

To evaluate the effectiveness of our proposed carefully designed
deep architectures for GCNs, we conduct extensive experiments on
the Open Graph Benchmark (OGB) [20]. Firstly, we do ablation
study on the ogbn-proteins dataset. Then we evaluate our proposed
DPGCNs on all the 4 datasets and compare the performances with
competitive baseline methods.

5.1. Datasets and Experimental Setup

Datasets. We conduct our experiments on the recently published
datasets of Open Graph Benchmark (OGB) [20], which is a diverse
set of challenging and realistic benchmark datasets to facilitate scal-
able, robust, and reproducible graph machine learning research. In
this work, our experiments are conducted on two OGB datasets
(ogbn-proteins and ogbn-arxiv) for node property prediction and
the other two OGB datasets (ogbg-molhiv and ogbg-ppa) for graph
property prediction.

Node Property Prediction. For the task of node property
prediction, the two chosen datasets are protein-protein association
networks (ogbn-proteins) and paper citation networks (ogbn-arxiv).
ogbn-proteins is an undirected, weighted, and typed graph contain-
ing 132,534 nodes and 39, 561, 252 edges. For ogbn-proteins, the
task is to predict the presence of protein functions in a multi-label
binary classification setup and evaluated by the average of ROC-
AUC scores. ogbn-arxiv consists of 169, 343 nodes and 1, 166, 243
directed edges. For ogbn-arxiv, the task is to predict the primary
categories of the arxiv papers and evaluated using accuracy.

Graph Property Prediction. For the task of graph property pre-
diction, the two chosen datasets are molecular graphs (ogbg-molhiv)
and protein-protein association networks (ogbg-ppa). ogbg-molhiv
has 41, 127 graphs. For ogbg-molhiv, the task is to predict the target
molecular properties and evaluated by ROC-AUC scores. ogbg-ppa
consists of 158,100 protein association graphs. For ogbg-ppa, the
task is to predict what taxonomic group the graph originates from
and evaluated by accuracy.

Implementation Details. We follow the same experimental
setup used in [13]. The size of hidden channel is set to 64. The
growth rate of the densely connected path is set to 16. An Adam
optimizer with a learning rate of 0.01 is used to train models for
500 epochs. For the graph convolution operators F°™*¢(.) and

k
F;°°(+) in Eqn.(4) and Eqn.(5), we use the GENeralized Graph



Table 1. Comparisons with competitive baseline methods. The notation * denotes that virtual nodes are used. The notation - denotes that the
results of the baseline methods are not reported on the official OGB leaderboards for the corresponding datasets.

‘ UniMP DeepGCN  DeeperGCN GCNII  GIN GIN* GSN Ours

ogbn-proteins | 0.8642 0.8496 0.8580 - - - - 0.8649
ogbn-arxiv 0.7311 - 0.7192 0.7274 - - - 0.7354
ogbg-ppa - - 0.7712 - 0.6892  0.7037 - 0.7727
ogbg-molhiv - - 0.7858 - 0.7558 0.7707 0.7799  0.7871

Table 2. The AUC scores for ablation study on the dual paths on the
ogbn-proteins dataset.

#of layers | DPGCN-Res

DPGCN-Dense DPGCN  DPGCN*

5 0.8391 0.8150 0.8411 0.8402
10 0.8450 0.8384 0.8507 0.8471
20 0.8489 0.8513 0.8571 0.8558
40 0.8523 0.8596 0.8626 0.8628
60 0.8556 0.8598 0.8642 0.8640
80 0.8575 0.8597 0.8649 0.8631

Convolution (GENConv) operator [13]. For the graph convolution
operator F??(-) in Eqn.(7), we use the ClusterGCN graph convo-
lutional operator [21]. We use the more efficient version of DPGCN
in Figure 2(b) as the default DPGCN in the experiments. We im-
plement our models based on PyTorch Geometric [22] and run our
experiments on NVIDIA V100 32GB. More detailed information
about implementations can be found in the code repository.

5.2. Results

Effect of Dual Paths. Our proposed DPGCN5s are composed of both
a residual path and a densely connected path. To show the effect
of dual paths, we construct some ablated models. DPGCN-Res is
the same as DPGCN except that it only maintains a residual path.
DPGCN-Dense is the same as DPGCN except that it only maintains
a densely connected path. DPGCN* is the same as DPGCN except
that DPGCN* use the summation operator as the aggregation func-
tion across dual paths, while DPGCN use the concatenation operator
as the aggregation function across dual paths. We conduct ablation
study on the ogbn-proteins dataset.

Experimental results in Table 2 shows that DPGCN outperforms
other models on average. The models with dual paths are better than
the models only maintaining a single path. This means that DPGCN's
can really exploit the benefits from both residual connections and
dense connections, and further improve the overall performance. We
also observe that as the depth of the models increasing, the perfor-
mances become better. This means that protein property prediction
can benefit from the deeper architectures of GCNs. Because this
kind of applications usually require long-range information and thus
deeper architectures of GCNss are needed to take advantage of these
long-range interactions.

Comparison with Competitive Baseline Methods. We ap-
ply our proposed DPGCNs to 4 OGB datasets and compare the re-
sults with competitive baseline methods posted on the OGB learder-
boards. These competitive baseline methods include UniMP [23],
DeepGCN [12], DeeperGCN [13], GCNII [14], GIN [18], GIN with
virtual nodes and GSN [24]. The provided experimental results on
each dataset are obtained by averaging the results from 10 indepen-
dent runs. Experimental results in Table 1 shows that our proposed

DPGCNs outperform all the competitive baseline methods in all four
datasets. The improvements on the four datasets are substantial and
thus demonstrate the effectiveness and advantages of our proposed
DPGCNEs.

6. CONCLUSION

In this work, we study the problem of designing deep architectures
for GCNs. Firstly, we introduce the Higher Order Graph Recurrent
Networks (HOGRNs) which can unify most existing architectures
of GCNs. Then we show that ResGCN and DenseGCN are special
cases of HOGRNs. To exploit the benefits from both residual con-
nections and dense connections and compensate for the drawbacks
from each other, we propose Dual Path Graph Convolutional Net-
works (DPGCNs5), which are composed of both a residual path and a
densely connected path to better encode the long-range structural in-
formation. DPGCNs are the first GCN architecture leveraging both
residual connections and dense connections at the same time. Exten-
sive experiments on Open Graph Benchmark (OGB) datasets clearly
demonstrate superior performances of our proposed DPGCNs over
competitive baseline methods on the large-scale graph learning tasks
of node property prediction and graph property prediction.
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