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ABSTRACT
User action modeling and prediction has long been a topic of impor-
tance to recommender systems and user profiling. The quality of the
model or accuracy of prediction plays a vital role in related applica-
tions like recommendation, advertisement displaying, searching,
etc. For large scale systems with a massive number of users, beside
the pure prediction performance, there are other practical factors
like training and prediction latency, memory overhead, that must
be optimized to ensure smooth operation of the system. We propose
a fast linear computational framework to handle a vast number of
second order crossed features with dimensionality reduction. By
leveraging the training and serving system architecture, we shift
heavy calculation burden from online serving to offline preprocess-
ing, at the cost of a reasonable amount of memory overhead. The
experiments on a 15-day data trace from Tencent MyApp shows
that our proposed framework can achieve comparable prediction
performance to much complex models like the field-aware factor-
ization machine (FFM) while being served in 2 ms with a reasonable
amount of memory overhead.
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1 INTRODUCTION
The accurate online prediction of user behavior or user-item inter-
action in large-scale web and mobile applications plays a vital role
in many revenue-generating applications, such as content/product
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recommendation [4, 18], advertisement displaying [2, 9], search
result ranking [6, 13], etc. Tencent MyApp is the largest Android
app store in China, with a market share of 24.7% in China in 2017,
followed by 360 Mobile Assistant (15.5%) and Xiaomi App Store
(13.0%)1.

Like other e-commerce sites or content aggregators, Tencent
MyApp critically relies on the accurate and fast prediction of the
activation rates of a user on different apps to perform online person-
alized app recommendation, ranking, and advertisement placement,
when a user opens MyApp. Moreover, this system is extremely
large, with 2 × 108 users, 5 × 104 apps, and more than 104 features
spanning users, apps and the context. Given the sheer scale of the
system, it is a great challenge to make and serve such predictions
both instantaneously and accurately whenever a user opensMyApp,
within only several milliseconds, the tolerable delay of a typical
user. Note that pre-computing all the user-item activation scores
and using the pre-computed scores for serving is not an option
in MyApp, since the large number of features considered are con-
stantly changing; the context features depend on the location and
time at which the user opens MyApp. Moreover, some user interest
features are derived from extensive feature engineering based on
the past digested content and are evolving over time.

Up to date, a variety of models with different levels of accuracy
and complexity have been adopted in industry for such prediction
and recommendation tasks. Simple statistical models and logistic
regression with extensive feature engineering are the first success-
ful models [11] that are still widely used in some cases today. They
can achieve a satisfactory prediction accuracy, with small cost on
computational resources during both the training phase and serv-
ing phase. To overcome the limitation of a linear model, carefully
selected second-order crossed features have been added into lo-
gistic regression to improve the performance [2, 13]. To further
effectively and efficiently model all second-order feature crossing,
the factorization machine (FM) [15] and, more recently, the field-
aware factorization machine (FFM) [9] have been proposed, where
the coefficient of each second-order crossed feature is modeled as
the inner product of two projected latent variables. Recently, even
more complex models based on the deep neural network (DNN)
have been proposed to further capture the higher-order feature in-
teractions [12, 14, 20, 21]. In addition, hybrid methods that combine
the powers of different models are proposed to further characterize
different levels of feature interactions and combine information
from human feature engineering with automatically learned fea-
tures [3, 7]. Finally, even more complex approaches are adopted as
winning solutions in several data mining challenges, such as Kaggle

1Google Play Store ranked the 8th among Android app stores in China in 2017, with a
market share of 3.7%
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and the Netflix Challenge, which are ensemble solutions combing
a large number of weaker estimators.

However, in real industrial environment, although carefully de-
signed complex models may bring about better prediction perfor-
mance, there are other practical constraints and goals in addition
to the pure prediction performance. One of the biggest concern is
the computational complexity [9]. In fact, as has been reported in
[9, 19], even for models with second-order feature crossing, the
system still suffers from long training and serving times when the
feature dimension and sample size scales up to size of Tencent
MyApp. A more critical constraint is the prediction serving time or
prediction complexity. A longer prediction latency due to the use of
more complex models could directly lead to observable fewer user
accesses and potential revenue loss [17]. Moreover, more complex
models could consume much more resources during serving, which
also harms the system scalability. Therefore, simple lower-order
polynomial feature interactions are still preferable in a production
environment in an extremely large-scale system like MyApp, which
still could achieve satisfactory prediction performance comparing
to much complex model [1].

Motivated by these observations, we present a practical algo-
rithm and system framework that strikes a balance between the
accuracy and model complexity (focusing on the serving latency),
as well as other system resource consumptions such as storage over-
head. We take the insights from FFM [20] and the hash trick [2] that
dimension reduction techniques can be used for sparse features,
which are largely present in our problem, especially for the even
more sparse second-order crossed features. We propose a linear
framework for prediction serving, which can leverage the sparsity
of second-order crossed features for dimensionality reduction via
a technique inspired by FFM. From a practical point of view, we
reformulate the prediction serving procedure and propose a pre-
calculation scheme to speedup the prediction for any second-order
models including logistic regression, FM and FFM.

Note that the original prediction serving complexity of any
second-order models is O (N 2), N being the dimension of the fea-
tures. Our linear framework only takes O (N ) time to serve each
prediction, at the additional cost for storing some pre-calculated
condensed features for each item, greatly reducing the serving time
as the feature space scales up. Furthermore, the memory cache cost
only scales linearly as the feature dimension, the user number and
the app number.

We evaluate our proposed scheme on a large dataset collected
from Tencent MyApp over a 15-day period. Since in MyApp, only a
part of all the apps downloaded by a user will be actively used by the
user, the problem is to predict the probability that a user-app pair
will become active in a certain context, for all the candidate apps for
this user. Experimental results suggest that our linear framework
can finish prediction procedure in 2 ms while achieving an accuracy
comparable to the much more complex FFM model.

In the following sections, We first introduce the background
and the problem setting in Sec. 2. In Sec. 3, we present our linear
framework. The speedup technique for online prediction calculation
is proposed in Sec. 4. We present performance evaluation in Sec. 5
based on a large dataset collected from Tencent MyApp. Related
work is discussed in Sec. 6. The paper is concluded in Sec. 7.
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Figure 1: An illustration of the hierarchical feature space in
MyApp. Fine-grained features are “one-hot” encoded or pro-
duced by some embedding methods so that the feature vec-
tor x is sparse and has a large dimension.

2 PROBLEM BACKGROUND
Tencent MyApp is a large mobile app distribution platform, which
recommends and distributes apps for Android users. Whenever a
user accesses the MyApp on his or her specific device, a request
is sent to the MyApp service platform, where different apps are
evaluated immediately and ranked according to relevant features.
A personalized ranked list of apps and scores are generated for this
request to help determine what apps the user will view in what
order as well as advertisement placement. In this app evaluation
procedure, one of the most important tasks is to predict the so called
download activation rate of each user-app pair. “Activation" repre-
sents the behavior that the user will keep using the downloaded app
in the following series of days, while “non-activation” represents
the downloaded apps that are not actively used by the user. All app
downloads are logged by the platform, with their activation status
tracked by the corresponding apps for a certain period of time. Any
predicted download activation rate is made based on the past logs
collected from both the MyApp platform and individual apps.

It is challenging to improve prediction accuracy due to the large
feature space (usually with a dimension of 104) as well as an enor-
mous number of users. Although more complex models usually
yield better performance, it also takes longer time to train them and
make predictions. In our problem, the prediction latency, which is
the key portion of the serving time, is especially critical, since scores
must be evaluated instantaneously upon receiving a request, i.e.,
when a user opens MyApp. As download activation rate prediction
is only a part of the entire serving phase, with other parts includ-
ing display arrangement, advertisement insertion, and logging, etc.,
there is a very strict latency requirement for the prediction. Bearing
these practical constraints in mind, we must optimize the prediction
of the download activation rate from a comprehensive perspective,
simultaneously considering prediction accuracy, online prediction
latency as well as the computational and storage resource overhead.

2.1 High Dimensional Feature Space in MyApp
As Fig. 1 shows, there are mainly three groups of features recorded
by MyApp platform. The first group is user features, including fine-
grained features which are either natural features like gender, age,



occupation, etc., or engineered features extracted based on past user
behavior, such as a user’s short-term and long-term interests into
one of the predefined app categories. The second group contains
the item features, which are also either natural features like app
type or engineered features extracted from past logs, such as the
app popularity (among different groups of users). The third group
contains context features of the request, such as the time, date and
location for the request, device type andmodel, the recent searching
queries of the user, etc.

Let x = (x1, . . . ,xd ) ∈ R
d denote a vector concatenating all

the fine-grained feature vectors. In our problem, the dimension
d of the entire feature space is over 104 (partly due to the use of
“one-hot” encoding to be described). Let xs be the feature vector
for a fine-grained feature s , where s ⊂ {1, . . . ,d } is the subset of
indices corresponding to the specific feature s . If xs is categorical,
e.g., gender, location, it is represented as a vector of length |s | with
“one-hot” encoding, e.g., for the gender feature, [1, 0] and [0, 1]
represent female and male, respectively. Other features like user
interests into different classes of apps are embedded measures and
are thus represented as vectors with multiple non-zero values.

Furthermore, let U , I , T ⊂ {1, . . . ,d } represent the subsets of
indices corresponding to all user features, all item features and
all context features, respectively. As is shown in Fig. 1, x is a con-
catenation of xU , xI and xT , which can be further divided into a
number of fine-grained features. For example, xU = {xs } such that
s ⊂ U .

2.2 Problem Definition
In the collected training data, each sample with features x will
have a 0 − 1 valued response y, where y = 0 represents non-
activation and y = 1 indicates a download activation. Let D =
{(x(0) ,y (0) ), (x(1) ,y (1) ), . . .} denote the set of all samples. Let f (x)
represent the predicted probability of download activation. InMyApp,
f (x) will be characterized by a certain learned model to minimize∑

(x,y )∈D

−y · log( f (x)), (1)

where the log loss is a natural measure of how close the estimated
activation probability f is to the true 0− 1 label in a statistical view
[5]. We will also use (1) as one of the metrics in Sec. 3 to evaluate
the prediction accuracy.

3 PREDICTION MODELS
Different statistical models are all trying to infer a function f (x)
based on all possible features in x to predict the probability that
a download action in MyApp will turn into an activation. This is
similar to the typical click through rate (CTR) prediction task in
many other applications in industry, where feature engineering
plays a central role. In this paper, we suppose that the features
in the vector x have already been properly pre-preprocessed via
typical binning or embedding methods [8]. Thus, we only consider
the modeling and system issues.

3.1 Logistic Regression
In such a prediction task, we do not have any concrete prior knowl-
edge about how the available features are mapped to the final

predicted probability. Logistic regression is one of the most popular
models for a scalable and stable solution. The specific form is

f (x) =
exp(−h(x))

1 + exp(−h(x)) , (2)

where

h(x) =
d∑
i=1

βixi + β0, (3)

is the linear logit function, and βi are the coefficients to be estimated
in the training procedure. The optimal coefficients can be obtained
by solving an optimization problem over all the training samples:

minimize
β

∑
(x,y )∈D

−y · log( f (x)) + 1
2λ∥β ∥, (4)

where ∥ · ∥ represents L1 or L2 norm that acts as a regularization
term and λ is a tuning parameter. In our work, we adopt the L1
norm.

3.2 Second Order Feature Crossing
The direct Logistic Regression model cannot express the nonlinear
relationship between the logit and the input features. There are a
variety of methods to improve the expressive power of the model.
Feature engineering is one of them. Typical feature engineering
methods are feature binning or embedding to map feature combina-
tions into a space that has larger linear correlation to the predicted
probability [8]. Feature engineering involves human efforts by expe-
rienced engineers who bears deep understanding of the application,
with many trials and errors. In this paper, we do not consider the
details of feature engineering and assume that the feature vectors
x are already a result of extensive feature engineering from raw
features.

We explore the interaction between features at the model level.
To capture the nonlinearity in h, a variety of basis expansion meth-
ods [5] can be introduced into the model h(x) in order to enlarge
the model expressiveness. Through basis expansion, instead of eval-
uating the logit function, h(x) is modeled in the following general
form:

h(x) =
∑
b

дb (x) +
d∑
i=1

βixi + β0, (5)

where each дb is a transformation function over all input features
x.

Second-order feature crossing has been reported to be effective in
CTR prediction problems [1, 10]. In our problem, we also adopt sec-
ond order feature crossing as an effective basis expansion method,
that strikes a balance between accuracy and complexity. Note that
the features in our problem have over 104 dimensions. In this case,
full feature crossing would bring about millions of weights, which
will impose heavy burdens not only on the training process, but also
on the online serving process. Besides, not all the crossed features
have a significant impact on the prediction. Hence, typically only a
subset of all second order crossed features is added into a model.

Now we introduce second order feature crossing between dif-
ferent fine-grained feature vectors, e.g., between gender and the
category of the app. Let C denote the set of all pairs of fine-grained



features (s, t ) to be considered in logistic regression. Then, we have

h(x) =
∑

(s,t )∈C

ϕ (xs , xt ) +
d∑
i=1

βixi + β0, (6)

where
ϕ (xs , xt ) =

∑
i ∈s, j ∈t

wi jxix j , (7)

and wi j is the weight to be determined. In fact, which pairs of
features to be included in C depends on both human expertise over
the problem and offline empirical tests.

3.3 Handling Feature Sparsity with Partial FFM
In the training process, e.g., using stochastic gradient descent (SGD),
βi (or wi j ) is updated only if the corresponding sample contains
a non-zero xi (or non-zero xix j ). However, most of the feature
vectors xs are very sparse. And for some feature vector xs , some
of the entries in that feature vector is even rarely non-zero, which
results into a even more sparse and unbalanced distribution of non-
zeros in the terms xix j . Under the SGD training, the weights of the
rare terms (rarely non-zero terms) can be unstable and oscillating,
degrading the effectiveness of the model.

Low-rank or dimension reduction based methods, such as fac-
torization machine (FM)[15] and field aware factorization machine
(FFM) [10], are reported to be effective to address this issue. Specifi-
cally, FM trains a hidden vector for each entry of the feature vector
x and models the weightwi j of a second order crossed term xix j
as the inner product of the corresponding hidden vectors of xi and
x j . With this idea, the cross term is modeled as

ϕ (xs , xt ) =
∑

i ∈s, j ∈t
< vi , vj > xix j , (8)

where < ·, · > denotes the vector inner product, and vi ∈ Rk repre-
sents the k-dimensional hidden vector of the entry xi . Furthermore,
FFM expands the capacity and expressiveness of the FM model, and
keeps a separate hidden vector for each pair of feature crossing
products. In this way, the cross term is modeled as

ϕ (xs , xt ) =
∑

i ∈s, j ∈t
< vit , vjs > xix j , (9)

where vit ∈ Rk represents the k-dimensional hidden vector of the
entry xi specifically for its crossing product with the feature t . In our
model, to address the sparsity issue for the feature crossing terms
and since different fine-grained features have different distributions,
we integrate the idea of FFM into the logistic regression model in
(6). Instead of expressing the second-order feature crossing via (7),
we model it as (9).

Finally, the prediction function is defined by combining (2), (6)
and (9). Unlike the original FFM, we only include the selected
crossed features to regularize the model and reduce the overall
model complexity during both the training and prediction phases.
We call the model resulted from the combination of (2), (6) and (9)
a partial FFM.

We use stochastic gradient descent (SGD) to train the model.
Typical momentum methods are integrated to help speedup the
convergence speed [16].
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Figure 2: A typical user action prediction system, cyanogen
blocks are the offline training module and yellow blocs are
the online serving module.

Remarks: Linear models are efficient and robust in prediction
tasks. Essentially, the linear model acts as a premium fusion tech-
nique to effectively combine a variety of features and weak predic-
tors. The direct linear part combines different features while the
(second order) basis expansion part increases the capacity of the
model. By leveraging FFM to model the coefficients of the second
order crossed features, the model simultaneously yields the hidden
feature vectors and adaptively merges the prediction powers of
different features and basis.

4 SPEEDUP THE ONLINE PREDICTION
Since improvement of the accuracy brings about high profit in
such problems, we always take all means to make the prediction as
accurate as possible. One approach in the linear framework is to
include more crossed features and test the results. Although linear
models with second order feature crossing are very effective models
and efficient to train and serve, they still suffers high latency when
problem scales up to the size in Tencent if more and more crossed
features are included. To address this issue, we propose a technique
to speedup the online prediction for the linear based models with
vast second order crossed features. We take advantage of the typical
system architecture and effectively separate the evaluation function
into two stages. In the offline stage we pre-calculate some middle
results and store them as features. In the online stage, the final
prediction can be efficiently calculated with the help of those middle
results. We show the whole offline training and online serving
system fist, and present our speedup techniques based on the typical
system structure.

4.1 Training and Serving System Overview
Fig. 2 shows the whole procedure for the prediction task. There
are mainly two parts in the system: the offline training module
and the online serving module. The offline module train the model
from the collected samples and do necessary preprocessing for the
features. The online serving modules handles the request, retrieving
necessary feature data and predict the results. The memory cache
system stores the user features and item features, which are updated
on a daily basis along with the model.



For online serving, each request comes to one of the prediction
servers with a single user ID, a lists of candidate app IDs and context
features, i.e., a tuple of (user ID, app IDs, context features) . Before
calling a prediction procedure, user features and item features are
retrieved from the memory cache system by their IDs. These user
features, item features and the context features are joined together
to construct complete prediction samples. The prediction server
calculates the predicted scores over the complete samples and return
the score list back.

The offline training module keeps updating both the prediction
model and features of users and apps in a daily basis. Models are
trained based on samples from past period of days and validated on
the samples of the last day. In our problem, all samples are tracked at
the front end servers and logged. After a certain time window, those
download records that are proved to be activated will be marked
as positive samples and other download records are marked as
negative samples. When models are trained and validated, they are
pushed on to the prediction servers. As for the user features and
item features, they are evaluated by different algorithms or rules
and updated within the memory cache system in a daily basis.

Note that in the whole system, user features and item features
are updated regularly in a daily basis and stored in the memory
cache system. Usually only the raw or engineered user or item
features are stored there. However, there is no strict constraints
on what we store and we can leverage the memory cache system
to store some pre-computed middle results to speed up the online
procedure.

4.2 Speedup the Serving Time via Integrating
the crossed terms and Features

The request response time is critical to quality of user’s experience.
In the online prediction procedure, response time comes from two
parts. The first part is the feature preprocessing time, which include
the inquiry time for retrieving features from the memory cache
system and the time for joining those features to the samples and
dealing with some feature preprocessing. The second part is the
time consumed to infer the score from the prediction model. The
first part usually related to the performance of the memory cache
system and the data structure. We don’t consider the optimization
for that in this work. In the second part, the time can vary a lot
from models to models with different complexity. Specifically, for
the linear model with second order feature crossing, evaluating the
linear aggregation of the raw features takes constant small time
while evaluating the crossed terms contribute most proportion of
time consumed in the prediction phase.

To speedup the calculation of (2), we need to carefully handle
the calculation for the second order feature crossing terms in (6). A
simple observation of evaluating (7) and (9) inspired our approach.
Taking evaluating (9) as an example,

ϕ (s, t ) =
∑

i ∈s, j ∈t
< vit , vjs > xix j

=
∑

i ∈s, j ∈t
wi jxix j (10)

=
∑
i ∈s

xi
∑
j ∈t

wi jx j . (11)

Sparse item feature

Sparse user feature Cross weight matrix

Sparse user feature Item feature and 
cross weight integration

User sparse feature dense item feature

xI

∑

j∈I

wijxj

wij

zU (I)

Figure 3: Demonstration of how the cross weights are inte-
grated into dense feature vectors. Original calculation is a
Cartesian product and the integrated one is only a dot prod-
uct.

If we denote the aggregation term in (11) as

zt (i ) =
∑
j ∈t

wi jx j , (12)

and zt (s ) as the vector that combines all zt (i ), ∀i ∈ s . we can get

ϕ (s, t ) =
∑
i ∈s

xizt (i )

=< xs , zt (s ) >, (13)
Note that for evaluating the second order feature crossing terms,
the trick in (11) can be applied no matter what kind of methods we
use to model the second order feature crossing terms, since we can
always evaluate the weights for the crossing terms first before the
transformation. In the above example, (10) produces the weights of
the crossing terms for the partial FFM algorithm.

In a general, the transformation idea in (13) can be applied to
evaluate any feature crossing terms from two sub-vectors of x with



no common entries. As we have discussed in Sec. 4.1, to speedup the
prediction procedure, we can leverage the memory cache system to
store some of the middle results. Specifically, the feature crossing
terms between user features and item features can be evaluated as

ϕ (U , I ) =
∑
i ∈U

xi
∑
j ∈I

wi jx j

=
∑
i ∈U

xizI (i )

=< xU , zI (U ) >, (14)

where zI (i ) and zI (U ) is defined similarly to zt (i ) and zt (s ) with
index sets notations changed. By (14), the evaluation for crossed
terms between two sparse feature vectors are deduced to evaluate
a dot product between a sparse feature vector and a dense prepro-
cessed feature vector. The model weights and the item features
are simultaneously integrated to a new item features vector that
calculated and cached into the memory cache system before serving
the model. Note that we can also integrate the model weights and
user features into new user feature vectors as well.

From this observation, in an online prediction system, we can
integrate the complex feature crossed terms into some new feature
vectors. This helps to reduce the complexity of evaluating the Carte-
sian product of two sparse feature vectors to evaluating a inner
vector product between a sparse vector and a dense vector. Fig 3
shows a toy example of this procedure.

4.3 Online Prediction Decomposition
We propose a general online prediction calculation routine for a
certain class of system that adopts linear based models with selected
or full second order crossed features. In these system, features
for each sample are associate to several groups of objects. When
requests comes, samples are first joined with the features in some
memory cache. Those memory cache allows us the flexibility of
pre-calculating some middle result to reduce the online prediction
complexity.

In these systems, the most time consuming part is the second
order crossed feature terms. Those terms can be divided into two
groups: the ones of crossed features from the same feature group
and the ones from different feature groups. For the first type of
crossed features, the aggregation can be evaluated offline and saved
directly as a feature under the individual owners of that group. For
the second type, aggregation can be calculated with the trick in
(14) while a middle result will be calculated offline and stored as a
new historical feature vector for the features from one of the two
groups. In this way, the original complexity of O (N 2) to evaluate
the crossed features is reduced to O (N ). Note that the linear terms
can also be aggregated offline and stored in the same feature of that
for the crossed features for each group.

There are additional storage overhead in the online memory
cache system. For each pair of feature groups, the storage cost is
O (nN ), where n denotes the total number of items in all groups and
N is the size of the features. The storage overhead is O (G2nN ) for
crossed features evaluation. For the aggregated result within the
same group, the storage will be O (n). The overall storage overhead
is O (G2nN + n). Note that in real system, the number of feature

groups will not be large. In our case, it is 2. The storage overhead
scales linearly to both the total number of items and feature size.

4.4 Saving the Memory Cache
Theoretically the proposed calculation framework can be applied
to any prediction procedure if some of the features are stored in
some memory cache. Therefore we can store the integrated new
feature vector in that memory cache system. However, in real ap-
plication, the storage overhead of the new scheme is not negligible.
We demonstrate the practical concerns for the proposed calculation
scheme. In our problem, we have three classes of features from user
features, app features and context features in which user features
and item features are stored in memory cache.

As we pointed out in Sec. 4.2, the offline transformation can be
aggregated on one of the two groups of features if we cache the new
integrated features for that group. We choose the one that require
less offline computation and/or storage overhead. In our problem,
we have a user scale of 108 with user feature size 103 while we
have app scale of 105 with app feature size 103. We would have
roughly 105 calculation and 108 storage overhead if we aggregate
the crossed feature weights and the app features into new app
features. The offline calculation complexity would be 108 and the
storage overhead would be 1011 if aggregating the user features.
Therefore we choose to aggregate the app features in this case. In
our framework, since we can integrate the crossed weight terms
into either side of the related two feature groups, we can always
select the side that takes less memory cost.

4.5 Adding Selected Crossed Terms
Our proposed speedup technique can be applied to evaluate any
crossed features as long as we can retrieve the feature vectors for
one of the two groups. And both the storage cache overhead and the
offline computation complexity only scales linearly to the number
of feature owners and size of features. However, it might be still
too large. In our scenario, for the crossed terms between users and
context features, we can only integrate the crossed terms onto the
user features since context features are directly collected beside the
request. But we have user size of 108, which is an intolerable storage
overhead. What’s more, some of the cross features between these
two group might be important to the model accuracy. In this case,
we can simply add selected important crossed terms and evaluate
them term by term as a normal logistic regression model with
crossed features. When doing the prediction, we directly calculate
those crossed terms instead of applying our speedup trick.

5 EXPERIMENTS
We conduct experiments based on a 15-day trace dataset of the
download-activation logs from Tencent MyApp from Sept 1, 2017
to Sept 15, 2017 to evaluate our proposed schemes. In this dataset,
we have about 2 × 108 users and 5 × 104 apps. The raw features
have a dimension over 1 × 104. We mainly focus on the balance be-
tween the prediction performance, prediction latency and resource
consumptions.

We test the prediction performance and speed for several schemes
to demonstrate the effectiveness of our proposed algorithm. Specif-
ically, we evaluate the following different scenarios.



DLR. Direct logistic regression models with no cross fea-
tures.
LR. Logistic regression model with fine selected set of cross
features.
FFM. Field aware factorization machine algorithm that tak-
ing all cross features.
pFFM. Partial FFM model that takes all the item-user, item-
context cross features into consideration.
pFFM+. Partial FFMmodel that takes all the item-user, item-
context cross features, along with additional selected other
cross features added.

When we test the prediction speed, for the models with crossed
features, we test both the ordinary approach that compute the
crossed feature directly and our proposed speedup approach. Those
scenarios will have the same prediction performance but different
time delay performance. For the convenience of presentation, we
denote the scenario with our speedup technique as FFM’, pFFM’,
pFFM+’ respectively.

5.1 Evaluation Metrics
We adopt several different performance metrics to comprehensively
demonstrate the prediction performance power of different models.
In our task, the predicted scores are some middle results for other
task, so we select several effective metric from both classification
problem and regression problem. For those regression metric, we
regard the 0-1 label as the true value and compare the predicted
probability against those numerical value. For those classification
metric, we adopt standard methods.

Logloss. As we mentioned in Sec. 2, logloss is a natural metric
to evaluate how well the predicted probability where a smaller log
loss implicit a larger likelihood that the overall predicted scores
are close to the true label distribution. Specifically, for sample D =
{(x(0) ,y (0) ), (x(1) ,y (1) ), . . .}, the logloss is

loдloss =
∑

(x,y )∈D

−y · log( f (x)). (15)

AUC. Area under the receiver operating curve, which measures
the probability that a randomly drawn positive sample is scored
higher than a negative sample.

AUC =

∫ 1

0
TPR(t )dFPR(t ), (16)

where TPR(t ) is the true positive rate and FPR(t ) is the false positive
rate with a threshold t . AUC indicate the global ranking perfor-
mance over the test samples.

F1 scores. The common metric for classification that combines
both precision and recall.

F1 = 2PR
P + R

, (17)

where P is the precision and R is the recall. F1 score usually varies
with different threshold value. In our experiment, we simply select
the threshold that yields the best F1 score.

MAE. Mean average error.

MAE =
1
∥D∥

∑
(x,y )∈D

∥ f (x) − y∥, (18)

where ∥D∥ denotes the number of samples in the set D.
MSE. Mean squared error.

MSE =
1
∥D∥

∑
(x,y )∈D

( f (x) − y)2. (19)

5.2 Model Training and Accuracy Performance
We use the data of the first 14 days as the training set and use the
data from the last day as testing set. We test all the algorithms of
DLR, LR, FFM, pFFM and pFFM+. Specifically, DLR only does a plain
logistic regression on the raw features. FFM takes all the second
order crossed features. pFFM includes all the item-user crossed
features and item-context crossed features. LR contains manually
selected sets of crossed features with continuously effort of fine
tuning, which is a stable version of model for the current Tencent
MyApp. The pFFM+ expands the pFFM by adding all the selected
user-context cross terms in the LR model.

Table 2 presents the prediction performance for those schemes.
We can see that models with second order crossed features signifi-
cant out performs the model with raw features, which confirms the
observations in [1, 10]. Besides, in our problem, the performance
generally gets better if more second order crossed features are in-
cluded in the model, where FFM achieves the best model accuracy.
Note that the pFFM, although not contains all the crossed features,
also get a great boost compared to the manually tuned LR. Sur-
prisingly, with addition crossed features in pFFM+, it has a very
close prediction performance to the full FFM. However, the serving
complexity can be much less than the FFM.

5.3 Prediction Speedup and Storage Overhead
To evaluate the effectiveness of speedup for our proposed technique,
we do a prediction experiment on the data trace on a platform
with Intel(R) Xeon(R) CPU E5-2670 v3 and 128 GB memory. As we
discussed in Sec. 4.2, the actual serving time includes two parts:
feature retrieving and preprocessing part and prediction part. In our
system, the first part takes a constant time of several milliseconds.
We do simulation to test the second part and simply cache all
the necessary features locally. As we will discuss later, the FFM’
will actually consumes an extremely large memory and we are
not able to really cache the features for that. Since we only need
to test the prediction speed for each scenario, we simply use the
same integrated dense user vector for all the users. Although the
prediction scoremakes no sense in thismanner, the prediction speed
should be close to real performance. To simulate the real calculation
load, we replay the trace to generate requests. We aggregate the
time for evaluating 2000 samples to simulate a request with one
user and a list items.

Fig. 4 and Fig. 5 presents the distribution of the total prediction
time for different scenarios. Specifically, Fig. 6 and Fig. 7 presents
the distribution of the prediction time for evaluating the crossed
features. Note that the results are based on simulation without con-
sideration of concurrency issue and in real case the performance
should follow the similar trend where the gap between scenarios
will be much larger. We can see that our proposed speedup tech-
nique can greatly reduce the prediction time. In our problem, the
FFM’, pFFM’ and pFFM’ can finish the prediction within nearly
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the same time to LR. Bearing mind that the LR only includes sev-
eral manually selected crossed features while the FFM’, pFFM’ and
pFFM+’ contains at least vast number of item-user crossed features
and item-context crossed features. Moreover, comparing to pFFM’,
pFFM+’ contains several important crossed features between user
features and context features, but the prediction time is still close
to pFFM’. Note that in terms of prediction performance, the pFFM+’
has an obvious improvement over pFFM’, which is a practical trick
to further improve the model performance with tiny prediction
delay increase as we discussed in Sec. 4.5

Table 1 shows the estimated additional storage overhead in the
memory cache system due to applying our speedup technique. To
deploy the speedup in FFM’, we have to generate new user features
for such a huge user pool of size 2 × 108. As we discussed in Sec. 4,
it will be unwise to integrate the crossed terms onto the group
that contains too much owners like user features. In the contrary,
since the number of the items are not large, integrating the crossed
terms onto the item features only incurs a reasonable extra memory
cache resource. To conclude, the pFFM’ achieve a close prediction
performance to a FFM that contains all the second order crossed
features, while yields a very fast prediction speed close to LR at a
reasonable extra storage overhead.

6 RELATEDWORKS
User action prediction problem has been a hot topic. Previous works
are mainly focused on improving the prediction performance with
varieties of models and practical tricks.
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Table 1: The Estimated extramemory cache overhead for dif-
ferent algorithms.

Algorithm Name FFM’ pFFM’ pFFM+’
Extra Storage 44.5 TB 11.8 GB 11.8GB

Table 2: The Performance of Different Algorithms

algorithm name MAE MSE AUC Log Loss F1 score
DLR 0.3159 0.1583 0.8154 0.4767 0.6446
LR 0.2883 0.1463 0.8458 0.4409 0.6713
pFFM 0.2762 0.1408 0.8575 0.4273 0.6859
pFFM+ 0.2734 0.1397 0.8603 0.4231 0.6879
FFM 0.2742 0.1380 0.8637 0.4179 0.6915

[11] estimates the advertisement displaying conversion rate via
inferencing over binomial distribution along specific data hierar-
chies. Logistical regression is applied to combine different estima-
tors. [2, 13] uses linear logistic regression models with second order
feature cross. In [2], a novel hash trick is also proposed to deal
with the sparse features of vast dimensions. It is reported that low
polynomial degree feature interaction models can effectively and
efficiently capture most of the feature interaction informations in
[1]. Specifically, a full second order polynomial cross is so call a



polynomial kernel of 2. [15] combines both power of a full second
order polynomial feature cross and dimension reduction. They pro-
pose factorization machine (FM) model that learn a latent feature
vector for every feature and estimate the feature cross via the inner
product of those features. [9, 10] propose field-aware factorization
machine (FFM) model that further improves the model capacity
of FM by keeping different latent feature vectors for each pair of
fields of feature interactions. As pointed in [9, 19], in a linear based
framework, second order terms are still time consuming in both
training and testing phase. We seek the insight of those linear based
approach and present a practical linear based model frame work.

Recently, deep neural network based models with much higher
complexity andmodel capacity are proposed. [12, 21] proposes CNN
and RNN based models in which the CNN based model explores
the relationship between neighboring features and RNN model
addresses the sequential information. [20] proposes factorization
machine supported neural network (FNN) model which pre-trains
the network by FM. [14] proposes Product-based Neural Network
(PNN) that introduces a product layer for the embedded features to
model the feature interactions. [3] seeks the insight of DNN and
proposes a hybrid network that combine both good estimators from
feature engineering in the shallow network and feature interactions
in the deep network. [7] combines FNN and DNN part to simulta-
neously capture both low level and high level feature interactions.
Those models improves the prediction accuracy at some certain
scenarios at the price of much higher computation complexity at
both the training and prediction phase.

For application in real systems, [13] presents an online learning
scheme for a linear based model. They also addressed several prac-
tical challenges on on memory saving, performance monitoring
etc. for real system. [8] also presents practical issues and tricks
on them. A hybrid model combining gradient boosting tree and
logistic regression is proposed to help learn the feature binning and
interactions. [9] focus on optimizing the training speed by deploy-
ing a distributed training procedure and applying a warm start. A
much more CPU resource consumption is also reported and they
handle it by reducing the latent factor size of the model regardless
of the degrade of performance. In our work, we leverage the online
prediction system architecture to speedup the online prediction.

7 CONCLUSIONS
In this paper, we propose a fast linear computational framework
to handle the user action prediction task in a large-scale system,
namely Tencent MyApp. In our framework, we carefully decom-
pose the time consuming online serving procedure into several
phases and used preprocessing in exchange for dimensionality re-
duction, such that upon the serving of a request, the corresponding
prediction result can be rapidly evaluated with the preprocessed
intermediate results. With this technique, we reduce the online
prediction time from O (N 2) to O (N ), N being the dimension of
the large feature space under consideration. Meanwhile, the pre-
diction performance is comparable with such models as complex
as FFM that takes all second order crossed features into account.
Experiments on a 15-day data trace from Tencent MyApp shows
the effectiveness of our proposed framework.
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