
Latency Reduction and Load Balancing in Coded
Storage Systems

Yaochen Hu
University of Alberta
Edmonton, Canada
yaochen@ualberta.ca

Yushi Wang
University of Alberta
Edmonton, Canada
wyushi@ualberta.ca

Bang Liu
University of Alberta
Edmonton, Canada
bang3@ualberta.ca

Di Niu
University of Alberta
Edmonton, Canada
dniu@ualberta.ca

Cheng Huang
Microsoft Research

Redmond, Washington
cheng.huang@microsoft.com

ABSTRACT
Erasure coding has been used in storage systems to en-
hance data durability at a lower storage overhead. How-
ever, these systems suffer from long access latency tails
due to a lack of flexible load balancing mechanisms and
passively launched degraded reads when the original
storage node of the requested data becomes a hotspot.
We provide a new perspective to load balancing in coded
storage systems by proactively and intelligently launch-
ing degraded reads and propose a variety of schemes
to make optimal decisions either per request or across
requests statistically. Experiments on a 98-machine clus-
ter based on the request traces of 12 million objects col-
lected from Windows Azure Storage (WAS) show that
our schemes can reduce the median latency by 44.7%
and the 95th-percentile tail latency by 77.8% in coded
storage systems.

CCS CONCEPTS
• Networks→ Network resources allocation; Data
center networks; Cloud computing; • General and ref-
erence → General conference proceedings; Metrics; Per-
formance;

KEYWORDS
Load Balancing, Tail Latency Reduction, Erasure Coded
System, Optimization

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5028-0/17/09. . . $15.00
https://doi.org/10.1145/3127479.3131623

ACM Reference Format:
Yaochen Hu, Yushi Wang, Bang Liu, Di Niu, and Cheng Huang.
2017. Latency Reduction and Load Balancing in Coded Storage
Systems. In Proceedings of SoCC ’17, Santa Clara, CA, USA,
September 24–27, 2017, 13 pages.
https://doi.org/10.1145/3127479.3131623

1 INTRODUCTION
Cloud storage systems, such as Hadoop Distributed File
System (HDFS) [3], Google File System (GFS) [8], Win-
dows Azure Storage (WAS)[4] store huge amounts of
data that are regularly accessed by personal users and
enterprises. Built upon commodity hardware in data-
centers, these systems may suffer from frequent data
unavailability due to hardware failure, software glitches,
I/O hotspots or local congestions. While the first gener-
ation of cloud storage systems rely on replication, e.g.,
3-way replication in HDFS, for fault tolerance, many cur-
rent production systems, e.g., Windows Azure Storage
(WAS), Google’s ColossusFS, Facebook ’s HDFS, have
adopted erasure coding, e.g., a (k, r) Reed-Solomon (RS)
code, to offer much higher reliability than replication
at a lower storage cost [11, 26]. Local Reconstruction
Codes (LRC) [9, 20, 25] can further reduce the recovery
cost, while still maintaining a low storage overhead.
However, the superior durability of erasure coded

storage does not come without any tradeoff; it has been
widely reported that coded storage suffers from long
access latencies [6, 9, 17, 18, 27]. Major cloud providers
including Amazon, Microsoft and Google have made a
common observation that a slight increase in overall
data access latency (e.g., by only 400 ms) may lead to
observable fewer accesses from users and thus signifi-
cant potential revenue loss [21]. Due to the latency issue,
coded storage is only limited to storing data that are
seldom accessed, and may suffer from long tail latencies.
Most prior studies have attributed the cause of latency
tails to degraded reads, defined as the passive action to
read multiple (coded) objects from other storage nodes

https://doi.org/10.1145/3127479.3131623
https://doi.org/10.1145/3127479.3131623

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Yaochen Hu, Yushi Wang, Bang Liu, Di Niu, and Cheng Huang
to reconstruct the unavailable object when the original
object is temporarily unavailable. Therefore, most stud-
ies have focused on inventing new coding schemes to
reduce the reconstruction cost, i.e., the number of reads
required during degraded reads [9, 11, 17, 20, 25, 27].

In spite of the efforts to reduce recovery cost follow-
ing data unavailability events, an equally important yet
largely overlooked question is—what is the most sig-
nificant triggering factor of degraded reads in the first
place? To answer this question, it is worth noting that
most storage systems based on erasure codes today, in-
cluding Google’s ColossusFS andWAS, adopt systematic
codes, which place each original uncoded object on a
single node [11]. A request for an object is first served
by the normal read from its single original copy, while a
timeout can trigger the degraded read. Although such a
design choice attempts to avoid degraded reads as much
as possible, yet it may not fulfill its intention; by pre-
sumably serving every request with the single original
object, this design may greatly increase the risk of a stor-
age node becoming congested, forcing degraded reads
to be triggered involuntarily [9, 11]. The local conges-
tion issue is further exacerbated by the fact that most
real-world demands are highly skewed [6, 18, 27]. In
this case, some node hosting hot data may become a
hotspot and there is little chance of load balancing in
the current system design, since the original copy of
each object is stored only on a single node. In contrast,
3-way replication is unlikely to suffer from the same
congestion issue, since it can always direct a request to
a least loaded node out of the three nodes, each storing
a copy of the requested object.
In this paper, we take a radically different approach

to latency reduction in coded storage systems. Instead
of triggering degraded reads passively following normal
read timeouts, we propose to proactively and intelligently
launch degraded reads in order to shift loads away from
hotspots and prevent potential congestion early. Note
that we do not consider object write/update, since many
big data stores today are append-only, in which each
object is immutable and any changes are recorded as
separate timestamped objects that get stored on new
nodes. Intuitively speaking, if a hot object is attracting a
large number of requests which may potentially congest
its original storage node, we may serve some of these re-
quests through degraded reads in the first place, without
waiting for normal read timeouts. Although proactive
degraded readsmay reduce the longest queues, theymay
flood the system with more reading tasks and affect the
service latencies for other requests in general. There-
fore, we must carefully decide: 1) for which request a
degraded read should be performed, and 2) should a
degraded read be used, from which storage nodes the
degraded read should be served.

Toward these objectives, we propose a variety of load
balancing approaches to reduce latencies in erasure
coded storage systems, including statistical optimiza-
tion that can globally coordinate different requests and
per-request optimal decisions. A first approach is an ef-
ficient optimization framework that intelligently main-
tains a load direction table between all requests and
storage nodes, based on periodically sampled demand
and queue statistics. This approach is sub-optimal since
it only updates direction decisions periodically, failing
to utilize instantaneous load information. We then natu-
rally turn to per-request optimal decisions, one of which
is least latency first, that is to serve each request with
the normal read or a degraded read, whichever mini-
mizes the current request latency. However, this may
lead to an excessive number of degraded reads and in-
crease overall system burden, affecting future requests.
To solve this issue, we introduce the key notion of mar-
ginal load and propose a novel least-marginal-load-first
policy which judiciously and lazily launches degraded
reads for load balancing based on server queue length
statistics, without flooding the system. To reduce the
server queue length probing overhead, we further adapt
the power-of-two sampling idea to our per-request opti-
mal load balancing in coded storage systems. We show
that the per-request optimal decision is essentially the
optimal solution to the statistical optimization problem
for each single request with a specific objective func-
tion. Note that per-request optimal decisions have an
inherent probing overhead that scales with the demand,
such that a large number of concurrent controllers must
be used for heavy workloads. In contrast, the statistical
optimization, though being a sub-optimal approach, is
scalable since it only needs to make a small fixed amount
of probes in each period.

We deployed a coded storage testbed on 98 machines
to evaluate the performance of the proposed schemes by
replaying a large amount of real request traces collected
from Windows Azure Storage. Results suggest that the
proposed schemes based on proactive degraded reads
can reduce the median latency by more than 40% and the
95-percentile tail latency by more than 75% in RS-coded
systems and LRC-based systems, as compared to the cur-
rent approach of normal read with timeouts. We show
that least marginal load first can achieve supreme la-
tency reduction when there is an enough number of con-
trollers and the network I/O is not a bottleneck, whereas
the statistical optimization can yield a latency close to
least marginal load first with inertia probing, yet achiev-
ing a higher request processing throughput when the
number of controllers is limited.

Latency Reduction and Load Balancing in Coded Storage Systems SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
2 LOAD BALANCING IN CODED

STORAGE
In the traditional design of erasure coded storage sys-
tems, degraded reads are triggered passively to serve
a request when the storage node (server) storing the
original requested object is temporarily unavailable or
to restore a failed server. We take a radically different
approach, by letting the system intentionally and in-
telligently perform degraded reads based on demand
information and load statistics in the system to direct
requests away from hot servers. Bearing request laten-
cies, server load balancing and network I/O overhead
in mind, we present several approaches to decide for
which request a degraded read should be launched and
from which servers the degraded read should be served.

2.1 Terminology and System Model
A cloud storage cluster makes redundant copies of each
single logic unit of data in order to maintain the avail-
ability of highly demanded data. In such systems, a large
number of small objects are grouped to form relatively
larger partitions (or blocks), typically each of size 64
MB to several GBs. In a replication-based system, these
partitions are replicated and placed on several different
storage nodes. Each incoming request is served by one
of the replicas [13] chosen either randomly or accord-
ing to more sophisticated load balancing schemes. Such
systems suffer from a high storage overhead. For the
typical 3-replica, there is a 3× storage overhead.
Erasure coded systems are now widely adopted to re-

duce storage overhead while achieving high reliabil-
ity and availability. Partitions form coding groups (or
stripes). In each group, parity partitions are generated
from the original partitions. The original and parity par-
titions are spread across different storage nodes. For
instance, with a typical (6, 3) RS code, in each coding
group, 3 parity partitions are generated from 6 origi-
nal partitions. Each of the 9 partitions can be recovered
from any other 6 partitions in the same coding group. A
(6, 3) RS code can reduce the storage overhead down to
1.5× with a higher reliability than 3-replica.

Each request is usually directed to the node that stores
the original partition containing the requested object.
We call this storage node the original node for the ob-
ject and a read from the original node a normal read.
When the normal read has a large delay due to temporal
unavailability of the corresponding storage node, the
request will be served by a degraded read, that is to read
any 6 other partitions in the same coding group. In both
a normal read and a degraded read, we do not need to
read the entire partition(s); only the offset correspond-
ing to the requested object needs to be read from each
partition. A common problem of RS coded storage is that

the system will suffer from high recovery cost defined as
the number reads that must be performed to recover an
unavailable object. Other codes have been proposed to
further reduce the recovery cost, e.g., the Local Recon-
struction Code (LRC) [9] optimizes the recovery cost
for the failure or unavailability of a single node, which
is a common case in practice. Specifically, for a (6, 2, 2)
LRC, every 6 original partitions form a coding group,
divided into two subgroups. One local parity partition
is generated for each subgroup and there are two global
parity partitions. Every single node failure can be recov-
ered from 3 partitions in the local subgroup. The failure
of 3 partitions in the same subgroup and some failures
of 4 partitions can be recovered with the help of global
parity partitions.

For a typical cloud storage system, such asWAS, client
requests first arrive at certain frontend servers or gate-
ways. The frontend servers direct the incoming requests
to different storage nodes subject to content placement
constraints and certain load balancing policies. Requests
are then directly served by the selected storage node(s)
to the clients. We use request latency to describe the time
gap from the arrival of a request at the frontend server
until the request is fully served, and use task latency to
describe the time that it takes to perform a read task
for a particular single object (coded or uncoded) being
assigned to some storage node. For example, in a (6, 3)
RS coded system, the request latency for a normal read
is just the queuing time of the request at the frontend
server plus the task latency of a single read. In contrast,
a degraded read will launch 6 read tasks on 6 different
storage nodes. In this case, the request latency will be
the longest read task latency plus the queuing time of
the request at the frontend server (gateway).
We can assume that the storage nodes are homoge-

neous in terms of network configuration and task pro-
cessing speeds, which is common in pratice. However,
our ideas can easily be generalized to heterogeneous
storage nodes by considering the processing speeds of
servers.

2.2 Proactive Degraded Reads
In a replication-based system, each request can be di-
rected to the least loaded storage node storing the re-
quested object. However, for an erasure coded system,
the original object is stored on only one storage node
with little opportunities for load balancing. Therefore,
traditionally, degraded reads are launched only when
the normal read has timed out. However, in this paper,
we show that launching degraded reads proactively for
carefully selected requests can in fact reduce access la-
tencies and improve the overall system efficiency.
From the request traces of WAS, we found that the

requests are highly skewed: most requests are for a small

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Yaochen Hu, Yushi Wang, Bang Liu, Di Niu, and Cheng Huang

S1 S2 G1L1 L2 G2

a b c aa

S3 S6S4 S5

a Degraded Read

Server Load

Server

Normal Reads Only

Normal + Degraded Reads

2

1

a

b c

a a a

Figure 1: Illustration on why carefully triggered
degraded reads may help balance the loads.

portion of partitions. Consider a toy example of (6,2,2)
LRC code in Fig. 1, where 3 original partitions placed on
servers S1, S2 and S3 form a subgroup, with a local parity
partition stored on server L1. Suppose that server S1 is
already heavily loadedwith requests, while S2, S3 and L1
are relatively less loaded. When a request for an object
on sever S1 comes, the traditional scheme still directs the
request to S1, since S1 is still available although heavily
loaded. In contrast, if we have proactively launched a
degraded read (on servers S2, S3 and L1 together) to
reconstruct the requested object in the first place, both
the request latency and the load of server S1 can be
reduced.

2.3 Statistical Optimization
To answer the question whether to serve a request with
a normal read or a degraded read and which servers to
serve the degraded read, we first inspect the problem
in an optimization point of view. Other approaches are
inspired and justified by the optimization framework.
We adopt a statistical optimization approach based

on the queue status refreshed periodically as well as
the request history in near past. Specifically, we keep a
load direction table computed periodically by solving an
optimization problem to be described soon, based on the
latest storage node queue status and request statistics
measured within a certain window. The table specifies
optimized proportions at which the requests for an ob-
ject in each partition should be served by the normal
read or each degraded read combination. For each non-
splittable request that arrives at a frontend server, load
direction is made at random according to the proba-
bilities derived from the proportions given in the load
direction table.

Although we direct the load via the optimal solution,
the result is still sub-optimal since the table is only up-
dated periodically, failing to utilize the instantaneous
load information. However, this approach only needs a
fixed amount of probes in each period and thus is scal-
able to the number of requests. We present the details

of the statistical optimization model in the remaining
subsection.
Suppose that n partitions are placed on m storage

nodes. To take into account the pending tasks on each
node, let Q⃗ = (Q1, . . . ,Qm) represent the existing queue
sizes (in bytes) onm storage nodes. Denote by s (i) the
original node of partition i . Let thek-tuple c = (sj1 , ...sjk)
denote a combination of k storage nodes, and Ci be the
set of all k-node combinations c which can serve de-
graded reads for objects in partition i . Note that for an
RS code, k is fixed. For an LRC, k could take several
values depending on whether a local or global recovery
is triggered [4].
Suppose Di is the instantaneous total request size

per second for objects in partition i , i = 1, . . . ,n. For
each request for an object in partition i , we use xi ∈
[0, 1] to denote the probability of serving it with the
normal read and yic ∈ [0, 1] to denote the probability of
serving it with a degraded read through the combination
c ∈ Ci . Apparently, we must have xi +

∑
c ∈Ci yic = 1.

Let L⃗ = (L1, . . . ,Lm), where Lj is the expected load of
storage node j as a result of load direction. Then, due to
the linearity of expectations, the expected load Lj is a
weighted sum of all the demands D1, . . . ,Dn weighted
by the load direction probabilities xi and {yic |c ∈ Ci },
i = 1, . . . ,n.

Let F (·) be a load balancing metric defined as a func-
tion of L⃗ + Q⃗ , i.e., the expected loads L⃗ on all storage
nodes plus the existing queues pending on them. There-
fore, the optimal load direction probabilities are the so-
lution to the following problem:

minimize
{xi }, {yic }

F (L⃗ + Q⃗) (1)

subject to Lj =
∑

{i :s (i)=j }
Dixi +

∑
{(i,c):j ∈c,c ∈Ci }

Diyic ,

j = 1, . . . ,m, (2)

xi +
∑
c ∈Ci

yic = 1, i = 1, . . . ,n. (3)

yic ≥ 0, ∀c ∈ Ci , i = 1, . . . ,n, (4)
xi ≥ 0, i = 1, . . . ,n, (5)

where load Lj directed to storage node j is given by (2).
The first term in (2) is the sum of all normal reads Dixi
with the storage node j being the original node, while
the second term is the sum of all degraded reads Diyic
that may incur loads on node j, i.e., j ∈ c, c ∈ Ci .

Several load balancing metrics can be used, for exam-
ple, the ℓ∞ norm: F (L⃗+Q⃗) = ∥L⃗+Q⃗ ∥∞ = maxj=1, ...,m (Lj+
Q j), which models the longest expected queue length
after load direction, and the ℓ2 norm: F (L⃗ + Q⃗) = 1

2 ∥L⃗ +

Q⃗ ∥22 =
1
2
∑m

j=1 (Lj +Q j)
2, which models the aggregated

per-byte processing latency in the system, assuming

Latency Reduction and Load Balancing in Coded Storage Systems SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
a similar processing rate across storage nodes in a ho-
mogeneous system. The metric can easily accommo-
date the case of heterogeneous systems where storage
node j has a data processing rate of S j ; in this case,
F (L⃗ + Q⃗) = 1

2
∑m

j=1 (Lj +Q j)
2/S j . If the ℓ∞ norm is used,

problem (1) is a linear program, and if the ℓ2 norm is
used, problem (1) is a quadratic program. In our ex-
periment, we adopt the ℓ2 norm. Standard tools like
MOSEK[2] can solve it efficiently with worst-case time
complexity of O (n3).

2.4 Per-Request Optimal Decisions
With the statistical optimization approach, the load di-
rection table is updated in a synchronized manner and is
not changed within each cycle, leading to a sub-optimal
result. A more direct approach is to instantaneously
probe the queue status of related data nodes and to make
an optimal decision for each request. In this case, we
need a criterion to measure how good a load direction
choice is. Optimal policies can be derived by adapting
problem (1) to per-request decisions under different load
balancing metrics.
Least Latency First.We first introduce the least la-

tency first policy, which corresponds to the per-request
minimization of the ℓ∞ norm of storage node queue sizes
(or the maximum queue size). Consider a single request
for an object of size D in partition i0. In this case, the
optimal policy comes from a solution to a special case
of problem (1), with Di0 = D > 0 and Di = 0,∀i , i0,
that is to solve problem (1) for this single request. Every
single non-splittable request will be served by either the
normal read or one of the degraded combinations. The
optimal choice will be the one that leads to the smallest
objective value in problem (1).

To find out the optimal decision, we can choose either
the normal read or a degraded read that results in the
lowest estimated request latency for the current request.
For the normal read, the request latency almost equals to
the corresponding task latency, which can be estimated
by the total size of all queued requests at the storage node
plus the requested object size, divided by the average node
processing rate. For a degraded read served by k other
storage nodes, the request latency can be estimated by
the longest task latency among the k nodes. Note that
in problem (1), different servers are assumed to have
the same processing rate. Thus, the processing rate is
omitted in the objective function.

For example, the least-latency-first policy can be per-
formed in a (6, 3) RS coded system in the following way:
Upon the arrival of a request, the queue sizes at the 9
storage nodes that can serve this request are probed,
including the original node and 8 other nodes, any 6 of
which can serve the request via a degraded read. Then,
we will compare the task latency of the normal read

with the longest task latency among the 6 least loaded
nodes out of the other 8 nodes, and pick whichever is
smaller to serve the request.
However, the least-latency-first policy may not per-

form the best in the long term since it only optimizes
the latency of the current request in question regardless
of future requests. In fact, for a request for a hot object,
the least-latency-first policy tends to shift load away
from the original node, whenever there are at least 6
other nodes in the same coding group with a queue size
smaller than that of the original node. Although such
a “water-filling” approach will help to balance server
loads, the drawback is that it encourages degraded reads
too much and increases the overall number of read tasks
launched in the system, which may prolong the service
latencies of future requests, as their original nodes have
been used to perform degraded reads for earlier requests.
Therefore, we need a load direction policy to reduce the
burden of heavily loaded storage nodes, while still pe-
nalizing degraded reads.

Least Marginal Load First. To strike a balance be-
tween reducing the current request latency and mini-
mizing the overall system load, we propose a different
metric to measure different load direction choices. We
introduce the least-marginal-load-first policy. Similar to
the case of LLF, this policy is essentially an optimal so-
lution to problem (1), but with an ℓ2 objective function.
Let us consider the special case of problem (1) again,
with Di0 = D > 0 and Di = 0,∀i , i0, which is to solve
problem (1) for this single request. Comparing the ℓ2
objective function values before and after the request
is directed, each direction decision will increase the ob-
jective by a certain amount. Specifically, for the normal
read, the increase is

∆Fs (i0) =
1
2
∑

j,s (i0)

Q2
j +

1
2 (Qs (i0) + Di0)

2 −
1
2
∑
j

Q2
j

= Di0 (Qs (i0) +
1
2Di0) = D (Qs (i0) +

1
2D), (6)

and for a degraded read with c ∈ C (i0), the increase is

∆Fc =
1
2
∑
j<c

Q2
j +

1
2
∑
j ∈c

(Q j + Di0)
2 −

1
2
∑
j

Q2
j

=
∑
j ∈c

Di0 (Q j +
1
2Di0) =

∑
j ∈c

D (Q j +
1
2D). (7)

The optimal choice would be the one that leads to the
minimum increase of the objective function. We can
pick it out by computing the value of (6) for the normal
read and the values of (7) for all degraded reads and
selecting the one with the minimum value.
Intuitively speaking, consider assigning a read task

of size D on a storage node with existing queue size Q .
With a similar processing rate across servers, Q + D/2
can be regarded as the per-byte average processing time.

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Yaochen Hu, Yushi Wang, Bang Liu, Di Niu, and Cheng Huang
D · (Q + D/2) is the summation of processing times per
byte in this read task. We call this value the marginal
load of the read task of size D. Let us now define the
marginal load of a normal read and that of a degraded
read. The marginal load of a normal read is just the
marginal load of the corresponding single read task,
whereas the marginal load of a degraded read is the
summation of all the marginal loads of the associated read
tasks. We define the least-marginal-load-first (LMLF)
policy as choosing the normal read or a degraded read
that achieves the least marginal load, which is naturally
an optimal solution to problem (1) for a single request
with an ℓ2 objective function.

For example, in a (6, 3) RS coded system, for an object
request, least marginal load first will compare the mar-
ginal load DQ0 + D2/2, where Q0 is the original node
queue size, with ∑6

i=1 (DQi + D2/2), where Q1, . . . ,Q6
are the queue sizes of the 6 least loaded nodes out of the
other 8 nodes, and pick whichever is smaller to serve
the request.
LMLF strikes a balance between reducing the cur-

rent request latency and minimizing the overall system
load. On one hand, storage nodes with a large Q incur
a larger marginal load and are less likely to be selected.
On the other hand, the marginal load of a degraded read
is the summation of the marginal loads on all associ-
ated nodes, penalizing degraded reads from flooding
the system. Moreover, objects with a larger size D are
less likely to be served by degraded reads due to their
higher marginal loads, attributed to the additive term
D2/2 in the marginal load of each associated task. In
other words, LMLF launches degraded reads lazily and
saves the system resources for future requests.

2.5 Distributed Power-of-Two Sampling
The per-request optimal decisions above rely on instan-
taneously probed queue sizes for each request, incur-
ring much probing overhead at the frontend (gateway)
servers. For a (k, r) RS code, k + r storage nodes need
to be probed for each request.
To save the probing overhead, we exploit an idea

similar to the Power of Two in job scheduling for load
direction in coded storage systems. Specifically, we can
just pick a random degraded read and only probe the k
storage nodes related to this degraded read and compare
its marginal load with that of the normal read. Taking
the (6, 3) RS code as an example, instead of having 9
probes for each request, in the sampled solution, we only
need to probe the original node and a set of randomly
chosen 6 storage nodes in the same coding group as the
requested object, and use whichever achieves a lower
marginal load, which saves the probing overhead by
22.2%. In particular, codes that are designed to optimize
the recovery cost for single node failures will benefit the

Ojbects (sorted) ×10
6

2 4 6 8 10 12

T
o
ta

l
R

e
q
u
e
s
t
N

u
m

b
e
r

10
0

10
2

10
4

10
6

10
8

(a) Distribution of aggregated
request number

Ojbects (sorted) ×10
6

2 4 6 8 10 12

T
o
ta

l
R

e
q
u
e
s
t
S

iz
e

10
0

10
5

10
10

10
15

(b) Distribution of aggregated
request size (bytes)

Figure 2: The properties of the trace data collected
fromWindows Azure Storage (WAS).

most from sampling. In a typical (6, 2, 2) LRC, if only
the local recovery combination and the normal read are
considered, we only need to probe 4 storage nodes for
each request, which saves the probing overhead by 60%,
compared to the full probing of 10 storage nodes.

Theoretical results [13] on Power-of-Two load balanc-
ing in traditional queuing systems have shown that the
expected performance will not drop too much as com-
pared to full probing. We will verify the effectiveness of
our version of distributed power-of-two sampling with
experiments.

2.6 Summary
We propose different methods to help making the opti-
mal decision for the proactive degraded reads. There is a
tradeoff in each method. Least latency first probes queue
status and optimizes for each request instantaneously.
But it does not coordinate different requests and incurs
larger probing overhead. Least marginal load first not
only optimizes for each request with instantaneous prob-
ing, but also saves system resources for future requests
by penalizing degraded reads. The distributed power-of-
two sampling can alleviate the probing burden at the
cost of a slight deviation from the optimal solution. Fi-
nally, in the case that probing overhead could form a
bottleneck, statistical optimization can be used to jointly
direct the loads for all requests taking advantage of joint
statistics of different requests, although the solution is
only an approximation to the optimality due to the lazily
updated demands and queue table.

3 IMPLEMENTATION AND
EXPERIMENT SETUP

We implemented and deployed a prototype coded stor-
age testbed to evaluate the performance the proposed
load balancing mechanisms on a cluster of 98 Amazon
EC2 virtual machines (which do not use SSD) by replay-
ing the request traces we have collected from Windows
Azure Storage (WAS), containing the request logs for

Latency Reduction and Load Balancing in Coded Storage Systems SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

..

.

Clients

…

Results

ServersStorage
Node

Storage
Node

Storage
Node

Storage
Node

Storage
Node

Requests

Queue Sizes

Front-End Server

Probe Queue
Infomation

Per-request
Decision

Thread 1

Direct Loads

Figure 3: System architecture with per-request op-
timal decisions based on instantaneous probing.

..

.

Clients

…

Results

ServersStorage
Node

Storage
Node

Storage
Node

Storage
Node

Storage
Node

Requests

Load Direction Table

Periodically
Obtain Queue

and Demand Info

Optimization

Thread 1

Direct Loads

Thread 2

Queue Sizes

Front-End Server

Figure 4: System architecture with statistical opti-
mization based on lazy queue status updates.

12 million objects over a one-day period. The objects
are randomly grouped into 2004 partitions of an equal
size. Fig. 2 plots the distribution of the aggregated de-
mands in terms of request number and request file size
for different objects in the trace. We can see that they
are highly skewed: a small number of hot objects attract
a large amount of requests, while most objects are cold.
We use a randomized partition placement strategy, typi-
cally adopted in WAS: when a (k, r) RS code is applied,
each coding group has k original and r parity partitions.
These k + r partitions are placed on k + r random stor-
age nodes such that the storage cost at each node is
balanced; when a (k, l , r) LRC is used, a coding group of
k + l + r original/parity partitions are placed on k + l + r
random nodes in a similar way.
Our testbed has an architecture shown in Fig. 3 and

Fig. 4, consisting of two major parts: frontend servers and
storage nodes. Each frontend server works in a decen-
tralized way, and can receive requests and direct them
to storage nodes according to a load balancing policy.

Each frontend has access to the content placement map
that indicates which partition is stored on which storage
nodes, as well as the offsets of each object in its partition.
For each request, we just need to read from the specified
offset in the corresponding partition for the object size.
In our experiments, the requests in the traces (each in a
form of <time>, <object id>, <size requested>) are fed
to one frontend server at random to mimic the way that
requests arrive at frontend servers from the clients in a
balanced way. We do not consider more sophisticated
frontend load balancing, since the focus is on the load
balancing of storage nodes.
The read tasks on each storage node are executed

sequentially in a first-come-first-service (FCFS) queue.
Each storage node keeps track its queue size. Since the
read tasks are different in sizes (due to different object
sizes), the number of tasks on a storage node is not a
good estimate of its real load [15]. Our system uses the
aggregated size of read tasks on each storage node to
estimate its queue size, which is also easy to keep track
of. We do not consider object write/update, since many
big data stores today are append-only, in which each
object is immutable and any changes are recorded as sep-
arate timestamped objects that get stored on new nodes.
Hence, write requests are unlikely to create a hotspot
on a single node and our focus here is on enabling faster
reads.

3.1 The Controller and Logging
Each frontend server has a controller to execute load
direction policies. In this work, we evaluate the perfor-
mance of the following polices:

1) Normal: normal read with degraded read trig-
gered upon timeout (a common existing solution);

2) LLF: least latency first with per-request full prob-
ing of all related storage nodes;

3) LMLF: least marginal load first with per-request
full probing of all related storage nodes;

4) LLF PW2: least latency first with per-request
power-of-two probing on sampled nodes;

5) LMLF PW2: least marginal load first with per-
request power-of-two probing on sampled nodes;

6) LMLF Lazy: least marginal load first with peri-
odic updates of storage node queue status;

7) Opt Lazy: statistical optimization of ℓ2 normwith
periodic updates of storage node queue status.

For LLF and LMLF as shown in Fig. 3, the controller
probes all the related nodes for each request, e.g., 9 nodes
for a (6, 3), for their current queue sizes and make per-
request decisions based on LLF or LMLF. For LLF PW2
and LMLF PW2, only the original node and the nodes
for one degraded read combination are probed: for RS,

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Yaochen Hu, Yushi Wang, Bang Liu, Di Niu, and Cheng Huang
it is a random degraded read, and for LRC, it is the lo-
cal recovery combination. Thus, LLF PW2 and LMLF
PW2 have lower probing overhead. For LMLF Lazy, one
separate thread probes all queue status periodically and
updates the queue table on all controllers every T sec-
onds, while each controller makes an LMLF decision
for each incoming request based on the lazily updated
queue table.
For Opt Lazy as shown in Fig. 4, besides the queue

table updated every T seconds, the aggregate request
rate for each partition is also recorded from the previous
T seconds. Then, a separate thread, implemented with
MOSEK[2] in Python, computes a load direction table
with the statistical optimization method in Sec. 2.3, and
obtains the optimal probabilities that a request for an ob-
ject in each partition will be served by the normal read
or certain degraded reads. Note that the same load direc-
tion probabilities are applied to all the objects in a same
partition, thus limiting the load direction table to a prac-
tical size. We do not differentiate between the objects
in a partition, since overly fine-grained load direction
increases overhead and partition-level load balancing
is sufficient in our experiments. Each controller then
probabilistically directs each incoming request based on
the current load direction table.
Note that Opt Lazy only solves problem (1) between

the normal read and a single degraded read: for RS, it
is a random degraded read, and for LRC, it is the local
recovery combination. This simplification significantly
reduces the optimization computation time to around
0.1 second for our problem sizes yet achieving similar
objective values to full optimization according to sim-
ulations. To simplify the synchronization issue among
frontend servers, we let each controller compute a sepa-
rate (yet nearly identical) load direction table every T
seconds based on the current queue status and collected
demand information. And there are two separate con-
current threads for computing the load direction table
and for directing each incoming request based on the
current table.

We record the following real timestamps for each re-
quest:A) the time that the request arrived at the frontend
server, B) the time that the frontend server sent the read
task(s) of this request to storage nodes, C) the time that
each task entered the queue at the designated storage
node, D) the time that the task processing started, E) the
time that the request processing finished.

4 EXPERIMENTAL RESULTS
Our evaluation is based on replaying a large amount
of traces collected from the Windows Azure Storage
(WAS), containing the request logs for 12 million objects
over a one-day period. We randomly group them into
2004 partitions of an equal size and import them into the

coded storage testbed deployed on a 98-machine cluster,
including 90 Amazon EC2 t2.nano instances (which are
not based on SSD to mimic commodity hardware used
in practice), which serve as the storage nodes, and 3 or
8 quad-core Amazon EC2m4.xlarдe instances, which
serve as the front-end servers. Fig. 2 shows the aggre-
gated request numbers and sizes for different objects.
The requests are highly skewed in that a few objects
have contributed a considerable portion of the total
workload to the system.

We replayed the traces in a typical peak hour under
different load direction polices listed in Sec.3, respec-
tively, in the testbed for both a (6, 3) RS coded storage
system and a (6, 2, 2) LRC-based storage system, and
record the timestamps we mentioned in Sec. 3.1. For
the LRC system, we evaluated the following 5 polices:
Normal, LLF PW2, LMLF PW2, LMLF Lazy and Opt Lazy,
since in LRC probing all the degraded read combinations
will incur an overly high cost. For the (6, 3) RS coded
system, we evaluated all the polices listed in Sec. 3.1.
In our experiment, we set the queue status probing fre-
quency to once per 4 seconds for Opt Lazy and once per
second for LMLF Lazy. We use 8 front-end servers for
the LLF, LMLF, LLF PW2, LMLF PW2 policies to support
a high capability for instantaneous probing and 3 front-
end servers for the Normal, Opt Lazy and LMLF Lazy
policies, which have much lower probing overhead.

4.1 Performance in the LRC-based
System

For an LRC-based system, Fig. 5(a) and Fig. 6(a) show the
request latencies under different policies. The request
latency is the actual latency each request encounters
including the controller processing time (the delay at
the controller before read tasks are launched) and the
maximum of related task latencies. Fig. 5(b) and Fig. 6(b)
show the task latencies under different policies. The
task latency is the time gap between the time a task
is inserted into the queue of a storage node and the
completion of the task. Fig. 7(c) shows the task waiting
time which is the time between a task entering a storage
node and the beginning of its processing. Fig. 6(c) shows
the controller processing time, which is the delay each
request experiences at the controller of the front-end
server, including queuing and decision-making. Table 1
further shows the overall statistics of the performance
of different polices.

First, we can see that all the polices with judiciously
launched proactive degraded reads can improve the ac-
cess latency compared to the traditional policy Normal
that triggers degraded reads following the timeouts of
normal reads. Specifically, LMLF PW2, using the mar-
ginal load and power-of-two sampled probes for opti-
mal per-request decisions, reduces the mean latency by

Latency Reduction and Load Balancing in Coded Storage Systems SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

LMLF PW2

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(a) CDF of request latencies

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

LMLF PW2

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(b) CDF of task latencies

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

LMLF PW2

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(c) CDF of task waiting times

Figure 5: The CDFs of different latency metrics for the storage system based on a (6,2,2) LRC.

LMLF
PW2

LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
im

e
 (
s)

(a) Box plot of request latencies

LMLF
PW2

LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
T
im

e
 (
s)

(b) Box plot of task latencies

LMLF
PW2

LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.000

0.002

0.004

0.006

0.008

0.010

T
im

e
 (
s)

(c) Box plot of controller processing times

Figure 6: Box plots for different latency metrics for the storage system based on a (6,2,2) LRC.

44.7% and the 95th-percentile by 77.8% with respect to
Normal.
Least Marginal Load First vs Least Latency First.

Fig. 5(b) and Fig. 6(b) show the task latencies for different
policies. LMLF PW2 is considerably better than the LLF
PW2 by using the marginal load as a load balancing cri-
terion. As we have analyzed, LMLF PW2 tries to strike a
balance between the reduced individual request latency
and the overall system load while LLF PW2 only makes
decisions to optimize the current request latency, thus
launching degraded reads too aggressively. Although
LMLF PW2 does not optimize the current request latency
directly, it is essentially a per-request optimization for
the aggregated task latencies in the long run as we have
shown in Sec. 2. In Fig. 5(a) and Fig. 6(a), the advantage
of LMLF PW2 over LLF PW2 in terms of the request la-
tency is not as obvious as it is in terms of the task latency.
This is due to a higher decision-making complexity on
the front-end servers for LMLF PW2 as shown in Fig. 6(c)
and the fact that the request latency for the degraded
read is dominated by the maximum of all the related
task latencies. In general, LMLF PW2 outperforms LLF
PW2 with better request latency performance and much
better task latency performance.
Opt Lazy vs. LMLF PW2. In terms of the request la-

tency and task latency as shown in Fig. 5(a) and Fig. 5(b),
LMLF PW2 outperforms the optimization scheme Opt
Lazy. However, Opt Lazy needs much fewer probes than
the LMLF as is shown in Table 1. In fact, the probing

overhead of LMLF PW2 scales linearly as the number
of requests increases while for Opt Lazy, the probing
overhead is linearly related to the number of storage
nodes, thanks to the use of periodic lazy updates. There-
fore, Opt Lazy may potentially be able to handle a much
larger amount of requests than the LMLF PW2 espe-
cially when the number controllers is limited. Moreover,
the controller processing time of LMLF PW2 shown in
Fig. 6(c) is much larger than that of Opt Lazy. Opt Lazy
can efficiently assign the requests to the storage nodes
based on the statistical optimization results calculated
by another thread while LMLF PW2 might suffer from
a possibly long probing delay or even timeout when
the demand is too high as compared to the available
network bandwidth. This phenomenon is not obvious
in our system since the network environment was very
stable when the experiments were conducted.

Opt Lazy vs. LMLFLazy.Both of the two approaches
only need to acquire the queue status of the storage node
periodically, thus with low probing overhead. However,
Opt Lazy outperforms LMLF lazy significantly since
LMLF Lazy usually suffers from race conditions since
queue status is not up-to-date. The optimization method
makes decisions based on both the periodically updated
queue status and request statistics, which help to make
a better decisions by jointly consider and coordinate the
requests for objects in different partitions.

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Yaochen Hu, Yushi Wang, Bang Liu, Di Niu, and Cheng Huang

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

LMLF

LMLF PW2

LLF

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(a) CDF of request latencies

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

LMLF

LMLF PW2

LLF

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(b) CDF of task latencies

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

LMLF

LMLF PW2

LLF

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(c) CDF of task waiting times

Figure 7: CDFs of different latency metrics for the storage system based on a (6,3) RS code.

LMLF LMLF
PW2

LLF LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 (
s)

(a) Box plot of request latencies

LMLF LMLF
PW2

LLF LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 (
s)

(b) Box plot of task latencies

LMLF LMLF
PW2

LLF LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.000

0.005

0.010

0.015

0.020

0.025

T
im

e
 (
s)

(c) Box plot of controller processing times

Figure 8: Box plots of different latency metrics for the storage system based on a (6,3) RS code.

4.2 Performance in the RS-coded
System

Fig. 7(a) and Fig. 8(a) plot the request latencies under
different load direction policies in a (6,3) RS coded sys-
tem. Fig. 7(b) and Fig. 8(b) plot the task latencies, while
Fig. 7(c) shows the task waiting times. Fig. 8(c) shows
the box plot for task waiting times and controller pro-
cessing times. Table 2 further shows the overall statistics
of the performance of different polices. For the RS code,
the performance demonstrates a similar overall trend
as that for the LRC system: we can reduce the request
latency significantly by judiciously launching proactive
degraded reads.

LMLF PW2 vs. LMLF. As shown in Fig. 7(a) and
Fig. 7(b), LMLF is better than LMLF PW2 since it makes
per-request optimal choices based on full probing. How-
ever, the improvement is limited, since the requests are
highly skewed and most of the time, the decision be-
tween whether to trigger a degraded read or not has a
more significant impact to the performance while se-
lecting which recovery combination for a degraded read
is relatively less important. There is a similar trend be-
tween LLF PW2 and LLF. Therefore, there is a high
motivation to use the LMLF PW2 and LLF PW2 instead
of LMLF and LLF with full probing to save the probing
cost. Note that in a (6,3) RS coded system, the saving
of probes is 1/3. This amount varies among different
erasure coded schemes depending on the total number

of partitions in a coded group and how many partitions
are needed to recover a single partition.

LMLF vs. LLF.As shown in Fig. 7(a), the performance
of LMLF seems to be slightly worse than LLF. Similar
to the case in LRC system, LMLF has higher controller
processing time. Also, LMLF tries to keep the overall
workload of the storage nodes to a lower level and only
reduce the request latency tail. On the other hand, LLF
searches for a decision with minimum per-request la-
tency directly and thus gets a better request latency. But
as is shown in Fig. 7(b), LMLF has much better task laten-
cies so that it incurs a much lower overall task workload
on the storage system and has the potential to serve
more demands.

5 RELATEDWORK
Most prior work has attributed the long latency tails in
coded storage to degraded reads. A large amount of re-
search has focused on reducing the recovery cost during
degraded reads. Local Reconstruction Code (LRC) [9] is
proposed to reduce the IOs required for reconstruction
over Reed-Solomon (RS) codes, while still achieving sig-
nificant reduction in storage overhead as compared to
3-way replication. Similar locally recoverable codes have
been presented in [20, 25]. HitchHiker [17] is another
erasure-coded storage system that reduces both network
traffic and disk I/O during reconstruction, residing on

Latency Reduction and Load Balancing in Coded Storage Systems SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
Table 1: Overall request latencies (seconds) and probing overhead (# probes/s) for the LRC-based system.

Policy mean var median 95th min max # probs per second
Normal 0.114 0.022 0.047 0.424 0.003 1.244 0
LMLF Lazy 0.087 0.013 0.037 0.324 0.003 1.197 270
Opt Lazy 0.048 0.005 0.025 0.177 0.003 1.038 67.5
LMLF PW2 0.033 0.001 0.026 0.080 0.008 1.038 888.9
LLF PW2 0.036 0.001 0.027 0.094 0.008 1.040 888.9

Table 2: Overall request latencies (seconds) and probing overhead (# probes/s) for the RS coded system.

Policy mean var median 95th min max # probs per second
Normal 0.207 0.056 0.105 0.695 0.003 1.951 0
LMLF Lazy 0.180 0.041 0.094 0.607 0.003 1.331 270
Opt Lazy 0.148 0.031 0.069 0.520 0.003 1.420 67.5
LMLF PW2 0.073 0.005 0.054 0.196 0.012 3.043 784.5
LLF PW2 0.076 0.004 0.058 0.203 0.012 0.684 784.5
LMLF 0.070 0.003 0.055 0.174 0.014 1.016 1008.7
LLF 0.069 0.002 0.057 0.166 0.015 1.053 1008.7

top of RS codes based on new encoding/decoding tech-
niques. HACFS [27] uses two different erasure codes,
i.e., a fast code for frequently accessed data to lower the
recovery cost, and a compact code for the majority of
data to maintain a low overall storage overhead. [31]
presents an algorithm that finds the optimal number of
codeword symbols needed for recovery with any XOR-
based erasure code and produces recovery schedules to
use a minimum amount of data. [11] proposes FastDR, a
system that addresses node heterogeneity and exploits
I/O parallelism to enhance degraded read performance.

However, another important question is: what is the
cause of degraded reads in coded storage in the first
place? In fact, aside from node failures, the majority of
degraded reads are passively triggered during tempo-
rary unavailability of the original node [9, 17, 27]. For
example, Over 98% of all failure modes in Facebook’s
data-warehouse and other production HDFS clusters
require recovery of a single temporary block failure [16]
instead of node failures. And only less than 0.05% of
all failures involve three or more blocks simultaneously.
Furthermore, a major reason underlying such temporary
node unavailability is that under skewed real-world de-
mands [1, 6, 18, 27], there is a high risk that a few nodes
storing hot data may become hotspots while other nodes
are relatively idle. In this paper, we argue that rigid load
balancing schemes, i.e., passive recovery after timeout, is
a major cause for long latency tails in coded storage, es-
pecially in the presence of skewed demands. In this case,
we can actually reduce latency by proactively launching
degraded reads for some requests to shift loads away
from hotspots early.
Recently, there have been other studies to reduce

download latency from coded storage systems, mainly
leveraging redundant downloads [5, 10, 12, 22–24]. The

idea is to download more than k coded blocks in a (k, r)
RS-coded system to exploit a queueing-theoretical gain:
as soon as the first k blocks are obtained, the remain-
ing downloads can be stopped. However, such a scheme
mainly benefits non-systematic codes, where there is no
original copies of objects in each coding group. A latency
optimization model has been proposed in [28] to jointly
perform erasure code selection, content placement, and
scheduling policy optimization, also for non-systematic
codes. In contrast, we focus on systematic codes (where
for each object, there is a single node storing its origi-
nal copy) that are commonplace in production environ-
ments to allow normal reads. With systematic codes,
always downloading k or more blocks is not efficient.
Besides, we mainly focus on disk I/O bottlenecks due to
queued read tasks instead of variable network latencies
of downloads.

The power-of-two-choices algorithm [13, 14] is a clas-
sical randomized load balancing schemewith theoretical
guarantees and wide applications [19]. Recently, there
have been renewed interests to generate power-of-two
load balancing to low-latency scheduling of batched
tasks. Sparrow [15] proposes to schedule a batch ofm
tasks in a Spark job to multiple workers by selecting
the lead loadedm out of dm probed workers. Later, it is
theoretically shown [30] that a similar batch sampling
technique maintains the same asymptotic performance
as the power-of-two-choices algorithm while reducing
the number of probes. Our per-request optimal decisions
generalize the power-of-two idea to the load balancing
between the normal read and different degraded reads
in a erasure coded storage system, where the objective
for comparison is not so obvious as in prior job schedul-
ing literature. We propose the least-marginal-load-first

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Yaochen Hu, Yushi Wang, Bang Liu, Di Niu, and Cheng Huang
policy can judiciously trades between current request la-
tency and overall system efficiency. Moreover, we unify
the proposed schemes in an optimization framework
that can be executed lazily to further save probing over-
head.
Many prior efforts have been devoted to reducing

tail latencies in replication-based systems. Specifically,
the C3 system in [7] presents a distributed approach to
reducing the tail latency, stabilizing the behavior via a
server ranking function that considers concurrent re-
quests on the fly and penalizes those servers with long
queue sizes. Tiny-Tail Flash [29] eliminates tail latencies
induced by garbage collection by circumventing GC-
blocked I/Os with four novel strategies proposed. One
of such strategies is to proactively generate content of
read I/Os that are blocked by ongoing GCs. In this work,
we focus on reducing tail latencies in storage systems
that are based on systematic erasure codes, by leveraging
proactively launched degraded reads. Furthermore, we
address the request concurrency issue in a much more
complex situation with theoretically inspired methods.

6 CONCLUSION
Erasure-coding-based storage systems often suffer from
long access latency tails. Prior studies have attributed
this to the presence of degraded reads when the origi-
nal data is unavailable and mainly aimed at improving
coding structures to reduce degraded read costs. We
take a radically different approach to tail latency re-
duction in coded storage systems and launch degraded
reads intentionally and judiciously to balance the loads.
Specifically, we propose a variety of schemes to direct
loads based on either per-request decisions made from
instantaneously probed storage node queue status or
an optimized load direction table computed by statis-
tical optimization with lazy queue status probes. We
implemented a prototype system and deployed it on
a cluster of 98 machines to evaluate the performance
based on a large amount of real-world traces. Results
suggest that the proposed least-marginal-load-first pol-
icy based on instantaneous sampled queue status can
reduce the median request latency by more than 40%
and the 95-percentile tail latency by more than 75% in
both RS-coded systems and LRC-based systems, as com-
pared to the existing approach of normal reads followed
by passive degraded reads upon timeouts. The statistical
optimization approach with lazy queue probing can also
significantly reduce request and task latencies with a
much lower system probing overhead.

REFERENCES
[1] Cristina L Abad, Nick Roberts, Yi Lu, and RoyHCampbell.

2012. A storage-centric analysis of mapreduce workloads:
File popularity, temporal locality and arrival patterns. In

Workload Characterization (IISWC), 2012 IEEE Interna-
tional Symposium on. IEEE, 100–109.

[2] MOSEK ApS. 2017. The MOSEK Python optimizer API
manual Version 7.1 (Revision 62). http://docs.mosek.com/
7.1/pythonapi/index.html

[3] Dhruba Borthakur. 2008. HDFS architecture guide.
HADOOP APACHE PROJECT http://hadoop. apache.
org/common/docs/current/hdfs design. pdf (2008).

[4] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, et al. 2011.
Windows Azure Storage: a highly available cloud stor-
age service with strong consistency. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 143–157.

[5] Shengbo Chen, Yin Sun, Longbo Huang, Prasun Sinha,
Guanfeng Liang, Xin Liu, Ness B Shroff, et al. 2014. When
queueing meets coding: Optimal-latency data retrieving
scheme in storage clouds. In IEEE INFOCOM 2014-IEEE
Conference on Computer Communications. IEEE, 1042–
1050.

[6] Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. In-
teractive analytical processing in big data systems: A
cross-industry study of mapreduce workloads. Proceed-
ings of the VLDB Endowment 5, 12 (2012), 1802–1813.

[7] Aditya Ganjam, Faisal Siddiqui, Jibin Zhan, Xi Liu,
Ion Stoica, Junchen Jiang, Vyas Sekar, and Hui
Zhang. 2015. C3: Internet-Scale Control Plane for
Video Quality Optimization. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 15). USENIX Association, Oakland, CA,
131–144. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/ganjam

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
2003. The Google file system. In ACM SIGOPS operating
systems review, Vol. 37. ACM, 29–43.

[9] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus,
Brad Calder, Parikshit Gopalan, Jin Li, Sergey Yekhanin,
et al. 2012. Erasure Coding in Windows Azure Storage..
InUsenix annual technical conference. Boston, MA, 15–26.

[10] Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2015.
Efficient replication of queued tasks to reduce latency
in cloud systems. In 53rd Annual Allerton Conference on
Communication, Control, and Computing.

[11] Osama Khan, Randal C Burns, James S Plank, William
Pierce, and Cheng Huang. 2012. Rethinking erasure codes
for cloud file systems: minimizing I/O for recovery and
degraded reads.. In FAST. 20.

[12] Guozheng Liang and Ulas C Kozat. 2014. Fast cloud:
Pushing the envelope on delay performance of cloud
storage with coding. Networking, IEEE/ACM Transactions
on 22, 6 (2014), 2012–2025.

[13] Michael Mitzenmacher. 2001. The power of two choices
in randomized load balancing. Parallel and Distributed
Systems, IEEE Transactions on 12, 10 (2001), 1094–1104.

[14] Michael David Mitzenmacher. 1996. The Power of Two
Choices in Randomized Load Balancing. Ph.D. Dissertation.
UNIVERSITY of CALIFORNIA at BERKELEY.

http://docs.mosek.com/7.1/pythonapi/index.html
http://docs.mosek.com/7.1/pythonapi/index.html
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ganjam
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ganjam

Latency Reduction and Load Balancing in Coded Storage Systems SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
[15] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion

Stoica. 2013. Sparrow: distributed, low latency scheduling.
In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM, 69–84.

[16] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. 2013. A
solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on
the Facebook warehouse cluster. Proc. USENIX HotStorage
(2013).

[17] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. 2014. A
hitchhiker’s guide to fast and efficient data reconstruction
in erasure-coded data centers. In Proceedings of the 2014
ACM conference on SIGCOMM. ACM, 331–342.

[18] Kai Ren, YongChul Kwon, Magdalena Balazinska, and
Bill Howe. 2013. Hadoop’s adolescence: an analysis of
Hadoop usage in scientific workloads. Proceedings of the
VLDB Endowment 6, 10 (2013), 853–864.

[19] AndreaWRicha, MMitzenmacher, and R Sitaraman. 2001.
The power of two random choices: A survey of techniques
and results. Combinatorial Optimization 9 (2001), 255–
304.

[20] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-
itris Papailiopoulos, Alexandros G Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. 2013. Xoring
elephants: Novel erasure codes for big data. In Proceed-
ings of the VLDB Endowment, Vol. 6. VLDB Endowment,
325–336.

[21] Eric Schurman and Jake Brutlag. 2009. The user and busi-
ness impact of server delays, additional bytes, and HTTP
chunking in web search. In Velocity Web Performance and
Operations Conference.

[22] Nihar B Shah, Kangwook Lee, and Kannan Ramchandran.
2014. The MDS queue: Analysing the latency perfor-
mance of erasure codes. In 2014 IEEE International Sym-
posium on Information Theory. IEEE, 861–865.

[23] Nihar B Shah, Kangwook Lee, and Kannan Ramchandran.
2016. When do redundant requests reduce latency? IEEE
Transactions on Communications 64, 2 (2016), 715–722.

[24] Yin Sun, Zizhan Zheng, C Emre Koksal, Kyu-Han Kim,
and Ness B Shroff. 2015. Provably delay efficient data re-
trieving in storage clouds. arXiv preprint arXiv:1501.01661
(2015).

[25] Itzhak Tamo and Alexander Barg. 2014. A family of
optimal locally recoverable codes. Information Theory,
IEEE Transactions on 60, 8 (2014), 4661–4676.

[26] HakimWeatherspoon and John D Kubiatowicz. 2002. Era-
sure coding vs. replication: A quantitative comparison.
In Peer-to-Peer Systems. Springer, 328–337.

[27] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A
Pease. 2015. A tale of two erasure codes in HDFS. In To
appear in Proceedings of 13th Usenix Conference on File
and Storage Technologies.

[28] Yu Xiang, Tian Lan, Vaneet Aggarwal, and Yih Farn R
Chen. 2014. Joint latency and cost optimization for era-
surecoded data center storage. ACM SIGMETRICS Perfor-
mance Evaluation Review 42, 2 (2014), 3–14.

[29] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A. Chien,
and Haryadi S. Gunawi. 2017. Tiny-Tail Flash: Near-
Perfect Elimination of Garbage Collection Tail Laten-
cies in NAND SSDs. In 15th USENIX Conference on File
and Storage Technologies (FAST 17). USENIX Associa-
tion, Santa Clara, CA, 15–28. https://www.usenix.org/
conference/fast17/technical-sessions/presentation/yan

[30] Lei Ying, R Srikant, and Xiaohan Kang. 2015. The power
of slightly more than one sample in randomized load
balancing. In 2015 IEEE Conference on Computer Commu-
nications (INFOCOM). IEEE, 1131–1139.

[31] Yujia Zhu, James Lin, Patrick PC Lee, and Yan Xu. [n.
d.]. Boosting Degraded Reads in Heterogeneous Erasure-
Coded Storage Systems. ([n. d.]).

https://www.usenix.org/conference/fast17/technical-sessions/presentation/yan
https://www.usenix.org/conference/fast17/technical-sessions/presentation/yan

	Abstract
	1 Introduction
	2 Load Balancing in Coded Storage
	2.1 Terminology and System Model
	2.2 Proactive Degraded Reads
	2.3 Statistical Optimization
	2.4 Per-Request Optimal Decisions
	2.5 Distributed Power-of-Two Sampling
	2.6 Summary

	3 Implementation and Experiment Setup
	3.1 The Controller and Logging

	4 Experimental Results
	4.1 Performance in the LRC-based System
	4.2 Performance in the RS-coded System

	5 Related Work
	6 Conclusion
	References

