
Reducing Access Latency in Erasure Coded Cloud
Storage with Local Block Migration

Abstract—Erasure coding has been applied in many cloud
storage systems to enhance reliability at lower storage cost than
replication. While a large amount of prior work aims to enhance
recovery performance and reliability, the overall access delay in
coded storage still needs to be optimized. As most production
systems adopt a systematic code and places an uncoded block on
only one server to be read normally, it is harder to balance server
loads and easier to incur latency tails than in 3-way replication,
where a block can be retrieved from any of the 3 servers storing
the block. In this paper, we propose to reduce the access latency
in coded storage systems by moving blocks with anti-correlated
demands onto same servers to statistically balance the load. We
formulate the optimal block placement as a problem similar to
Min-k-Partition, and propose a local block migration scheme and
derive an approximation ratio as a function of demand variation
across blocks. Based on real request traces from Windows Azure
Storage, we demonstrate that our scheme can significantly reduce
the access latency with only a few block moves, especially when
the request demand is skewed.

I. INTRODUCTION

Cloud storage systems, such as Hadoop Distributed File
System (HDFS) [1], Google File System (GFS) [2], (Windows
Azure Storage) WAS [3], store huge amounts of enterprise-
level and personal data. Since these systems rely on com-
modity servers in datacenters, data must be replicated (e.g.,
for 3 replicas in HDFS) for fault-tolerance. Erasure coding,
e.g., an (k, r) Reed-Solomon (RS) code, is further adopted in
many production systems, e.g., Windows Azure Storage [4],
Googles ColossusFS, Facebook’s HDFS, to offer significantly
higher reliability than data replication at a much lower storage
cost [5], [6]. However, as a tradeoff, when a data block is
unavailable due to disk failures or degraded reads (e.g., when
the server is temporarily congested or offline), multiple (coded
or uncoded) blocks in the same coded group must be read
from other servers to recover the unavailable block, leading
to higher recovery traffic. As a result, many techniques have
been proposed to reduce the amount of recovery traffic [6]–[8]
or recovery latency [9], [10] in coded storage systems.

However, an equally important performance metric that is
yet to be optimized in coded storage systems is the access
latency per request. Google, Microsoft and Amazon all have
observed that a slight increase in service delay (e.g., by as
small as 400 ms) may lead to observable fewer accesses from
users and potential revenue loss [11]. Although a few recent
studies [9], [10] attempt to optimize the delay performance
of coded storage, they rely on parallel downloads to leverage
a queueing-theoretical gain, where each request must access
k or more servers, and abort the remaining download threads
when k blocks are obtained. However, such a scheme mainly

benefits non-systematic codes, since for systematic codes
adopted by most systems today, normal reads are served by
the single uncoded original block, while parallel downloads
may unnecessarily increase traffic.

We study the access latency in coded storage systems from
a new angle of load balancing. Without surprise, unbalanced
server loads and long server queues are more likely to happen
in coded storage, since most production systems including
Googles ColossusFS and WAS, adopt a systematic erasure
code to place each original uncoded block on only one server
[6]. As a result, unlike 3-way replication, where a request can
be served by any of the 3 servers storing the block, a coded
system has to direct the request to the only server containing
the original block with little opportunity to balance the loads.
When the server load is heavy and the request is not responded
by a response deadline, degraded reads may be performed
which further increase the queues at multiple other servers
and exacerbate overall response latency.

In this paper, we propose to reduce the access latency
in coded storage systems through a novel approach of fine-
tuning block placement. Although there is little chance to
choose servers during normal reads, we may place blocks
with anti-correlated demands on a same server to benefit
from statistical multiplexing and prevent certain hot blocks
from congesting a specific server. We formulate the content
placement problem to minimize the expected average waiting
time of all incoming requests, only taking as input the mean
and covariance of request demands for different blocks, which
can be readily measured according to recent demand history.
To avoid globally shuffling content across the system, we
require all content migration to be local, and move as few
blocks as possible with respect to the current placement to
reduce the moving overhead.

Our statistical content placement problem is similar to the
Min-k-Partition Problem, a well-known NP-complete problem
[12], [13], which aims to divide a graph into k partitions to
minimize the sum of all intra-partition edge weights. Yet, our
problem turns out to be even more challenging, since we also
need to handle an additional constraint that no blocks from the
same coded group can be placed on the same server, which
is needed to maintain the promised reliability of an (k, r) RS
code. We introduce a novel technique to convert the constraint
into carefully designed weights in the objective function and
propose a time-efficient local search algorithm to only move
the block that reduces the latency objective the most at a
time. We prove that our algorithm always produces a feasible
solution that satisfies the special constraint and theoretically

derive the worst-case approximation ratio of our algorithm
with respect to the global optimal. We characterize such a
ratio as a function of a statistical demand variation measure;
the larger the demand variation among blocks, the better the
ratio.

Through simulations based on real traces collected from
the production Windows Azure Storage system, we show that
our local migration scheme can greatly reduce overall access
latency by only moving a small portion of all the blocks,
and beats a best randomized content placement that requires
global shuffling, without affecting storage overhead, reliability
or repair cost. It turns out that the real request pattern exhibits
high skewness and variation, which can significantly benefit
from our local block migration with only a few necessary
moves. Furthermore, the computation of such desired moves
can be done within 1 second for 252 original blocks stored
with a (6, 3) RS code on tens of servers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The content in a typical cloud storage system is stored in
data blocks. When an erasure code is used, e.g., a systematic
(k, r) RS code, every k original uncoded data blocks are
grouped in a coded group and another r parity blocks are
generated. In order to maintain a high availability, all these
k+r blocks are placed on different server nodes. We will call
them “coded blocks” in general with respect to the k original
blocks. In a normal read, any access request will be directed
to the server containing the original block. If the server is
unavailable, a degraded read is performed by reading any
other k blocks in the same coded group, requiring k server
accesses. Suppose the system has a total number of n coded
blocks placed on m servers.

In a small unit of time, which we call time slot (e.g., a
second), we denote the number of requests for each coded
block i by a random variable Di. Let ~D := {D1, D2, . . . , Dn}.
With request rates represented by random variables, we can
model demand fluctuation in different time slots. We use
~µ := E(~D) to denote the mean of ~D, and Σ := COV(~D) the
covariance matrix of ~D. We can assume that within a certain
measurement period, ~µ and Σ remain unchanged.

Note that the mean and covariance of ~D can be readily
measured or estimated from system traces. For example, the
system can keep track of the number of requests per second
or per minute for each original content block at a frontend
gateway [3] to calculate the empirical mean and covariances of
request rates for original content in the measurement period. It
can also easily record the rate of degraded reads (due to node
failures or temporary unavailability) and convert the request
rate statistics for original content blocks to those for all the
coded blocks, assuming degraded reads are randomly directed
to k other coded blocks. Alternatively, the access statistics
for all the coded blocks can even be measured directly in the
backend storage system. This way, ~µ and Σ for all coded
blocks are directly computed.

We use an integer variable yi, i = 1, . . . , n to represent the
index of the server on which the ith coded block is placed. De-

note {L1, . . . , Lm} the server loads, where Li =
∑
j:yj=i

Dj

represents the amount of requests directed to server i in the
time slot of interest. Let α := k+r denote the total number of
coded blocks in each coded group. Furthermore, we use Gi,
i = 1, . . . , n, to denote the index of the coded group to which
the ith coded block belongs; two blocks are in the same coded
group if and only if they have the same group index.

Considering a specific time slot, we formulate the optimal
content placement (CP) problem as

(CP) minimize
y1,y2,...,yn

E
(m∑
i=1

1

2
L2
i

)
(1)

subject to Li =
∑
j:yj=i

Dj , ∀i, (2)

yi 6= yj , if Gi = Gj , ∀i 6= j, (3)
yi = {1, 2, . . . ,m}, ∀i, (4)

Problem (CP) minimizes the expected squared l2-norm of
server loads, which represents the expected sum of waiting
times of all the requests in this time slot. We assume that the
request processing speed of servers are homogeneous [14],
which is common for storage servers in the same rack in a
datacenter. The purpose of (1) is to distribute random loads
~D across different servers in a statistically balanced manner.
Constraint (2) is the mapping from request rates to server
loads according to content placement y1, . . . , yn. Constraint
(3) requires that the coded blocks from the same coded group
must be placed on different servers to guarantee the promised
reliability of an RS (k, r) code. We do not consider queue
accumulation along multiple time slots in our model and focus
on solving the single period problem (CP). Note that server
processing capacity is usually over-provisioned in production
systems, and once server loads are balanced, queues will
vanish fast in a stable system.

We now convert Problem (CP) to an equivalent form similar
to the well-known Min-k-Partition Problem in graph theory yet
with one additional constraint. We define a weight matrix W
by

W := E(~D · ~DT) = ~µ · ~µT + Σ, (5)

Clearly, all the elements in W are nonnegative. Consider the
following problem, which we call Constrained Min-k-Partition
Problem (CMKP+):

(CMKP+) minimize
y1,y2,...,yn

∑
i<j

Wijδ(yi − yj) +
1

2

∑
i

Wii,

(6)
subject to yi 6= yj , if Gi = Gj ,∀i 6= j, (7)

yi = {1, 2, . . . ,m},∀i, (8)

where δ(·) is an indicator function, i.e.,

δ(x) :=

{
1, if x = 0,
0, otherwise.

Note that we use CMKP to represent the problem with the
constant term 1

2

∑
i Wii removed from (6).

Proposition 1. Problem (CP) is equivalent to Problem
(CMKP+).

Proof. Please refer to the Appendix for the proof. ut

Therefore, we can consider the (CMKP+) problem instead
of the original (CP) problem. In fact, (CMKP+) is a partition
problem in graph, where all the coded blocks can be deemed
as nodes, with W representing edge weights between every
pair of nodes. The objective is to divide nodes into k partitions
to minimize the sum of intra-partition edge weights, subject to
constraint (7), that is, no coded blocks from the same coded
group appear in the same partition. Without constraint (7), the
(CMKP+) problem can be converted to Min-k-Partition (MKP)
and Max-k-Cut (MKC), which are well-known NP-complete
problems [12], [13]. However, our problem (CMKP+) is
even more challenging due to the additional constraint (7) to
maintain the promised reliability offered by erasure coding.

III. LOCAL BLOCK MIGRATION ALGORITHM

We present the local block migration (LBM) algorithm
to solve (CMKP+) with theoretical worst-case approximation
guarantees, which equivalently solves the optimal content
placement problem (CP). We first present our technique to
handle the special constraint (7) before presenting the algo-
rithm.

A. Problem Reduction

First, we reduce (CMKP+) to a form without constraint (7).
Our idea is to solve the problem with constraint (7) removed,
while setting a sufficiently large weight for each pair of coded
blocks in the same coded group to prevent them from being
placed on the same server. Define W′ as

W′
ij =

{
fij(W) , if Gi = Gj , i 6= j,
Wij , otherwise, (9)

where fij(W) is a penalty function to be defined later. Re-
placing W by W′ and removing constraint (7) in (CMKP+),
we obtain

(MKP+) minimize
y1,y2,...,yn

∑
i<j

W′
ijδ(yi − yj) +

1

2

∑
i

W′
ii, (10)

subject to yi = {1, 2, . . . ,m}, for ∀i. (11)

Note that the term 1
2

∑
i W

′
ii in (10) is a constant. Hence,

(MKP+) is equivalent to Min-k-Partition Problem (MKP):

(MKP) minimize
y1,y2,...,yn

∑
i<j

W′
ijδ(yi − yj), (12)

subject to yi = {1, 2, . . . ,m}, for ∀i, (13)

whose dual problem is the famous Max-k-Cut (MKC) prob-
lem:

(MKC) maximize
y1,y2,...,yn

∑
i<j

W′
ij(1− δ(yi − yj)), (14)

subject to yi = {1, 2, . . . ,m}, for ∀i. (15)

Furthermore, (MKC) and (MKP) also have the same optimal
solution(s). The reason is that the sum of the objective values
of the two problems is∑
i<j

W′
ijδ(yi−yj)+

∑
i<j

W′
ij(1−δ(yi−yj)) =

∑
i<j

W′
ij , (16)

which is a constant. Since they are minimization and max-
imization problems, respectively, they will have the same
optimal solution(s).

In the following, to solve (CMKP+), we carefully design a
penalty function f , such that we always get a feasible solution
to the original problem (CMKP+) by solving (MKC) with a
new W′ yet without constraint (7). We propose an algorithm
to solve (CMKP+) and thus the original (CP) problem, by
approximately solving (MKC) using a classical local search
heuristic [15]–[17]. We are able to theoretically derive a worst-
case approximation ratio of the proposed solution to our
problem (CMKP+), which did not appear in prior literature
[15]–[17], by leveraging a unique problem structure in our
objective function.

B. Local Block Migration Algorithm

Considering the influence of every single move on the
objective, we define the gain of moving block i to server j as

gj(i) :=
∑

k:yk=yi;k 6=i

W′
ik −

∑
k:yk=j;k 6=i

W′
ik,∀i, j : j 6= yi,

(17)
which is the reduction of the objective of (MKP) if this move
is carried out. For consistency, let gj(i) = −∞ for j = yi.
Define f lij(W) as

f lij(W) :=ε+
1

m− α+ 1
min
{ ∑
k:k 6=i;Gk 6=Gi

Wik,

∑
k:k 6=j;Gk 6=Gj

Wkj

}
, (18)

where ε is an arbitrary positive constant.
Algorithm 1 describes our Local Block Migration (LBM)

algorithm to solve (CMKP+). In every iteration, we execute
the move of block i to server j who achieves the largest gain
gj(i), until no move can reduce the objective any more, as
shown in Lines 4-8.

To pick the best move argmax{i,j}gj(i), in Line 6 of
Algorithm 1, we do not need to recalculate all the m × n
gj(i) by (17) in every iteration. Instead, since there is only one
move in each iteration, we only need to update the gains gj(i)
affected by the move. Moreover, even the affected gains gj(i)
do not need to be recalculated by (17), and can be updated by
incrementally. The details of our efficient procedure to update
the gains gj(i) is described in Algorithm 2.

Note that LBM is a “local” algorithm that performs one
best move at a time to improve the latency performance. In real
systems, since it is impractical to globally shuffle all the block
placement to optimize load balancing, we can use the proposed
LBM to locally improve an existing arbitrary placement at
some frequency, e.g., every hour or every day. Moreover, we

Algorithm 1 Local Block Migration
Input: initial placement {y1, y2, . . . , yn}, W.
Output: migrated placement {y1, y2, . . . , yn}.

1: Calculate W′ by (9) and (18)
2: Calculate gj(i) for ∀i, j by (17)
3: procedure LOCAL BLOCK MIGRATION
4: while max{i,j}gj(i) > 0 do
5: Find the best move: im, jm ← argmax{i,j}gj(i)
6: Update all the affected gj(i) entries by Algorithm 2
7: Execute the move: yim ← jm
8: end while
9: end procedure

do not actually carry out all the moves yim ← jm computed by
Algorithm 1. Instead, we only make the moves to change the
initial placement to the LBM outcome. In Sec. IV, we show
that only a few moves will achieve the most latency reduction.

C. Feasibility and Worst-Case Approximation Ratio

We first show Algorithm 1 yields a feasible solution to our
problem with the special constraint (7).

Theorem 2. If W′ in (9) is defined with fij(W) given by
fij(W) = f lij(W) in (18), any solution given by Algorithm 1
will satisfy (7), and thus will be a feasible solution to
(CMKP+) and (CP).

Proof. Please refer to the Appendix for the proof. ut

Note that we do not necessarily have fij(W) > Wij .
However, Theorem 2 guarantees that if fij(W) = f lij(W),
LBM always produces a feasible solution that no two blocks
from the same coded group are placed on the same server.
Theorem 3 provides a worst case approximation for our Local
Block Migration with respect to the globally optimal solution
to (CP).

Theorem 3. Suppose fij(W) in (9) is given by f lij(W) in
(18). Then, the worst-case approximation ratio of Algorithm 1
with respect to the optimal solution of (CMKP+) and (CP) is
given by

1 +
1

m− α+ 1

(
E
((∑

iDi

)2)∑
i E(D2

i)
− 1

)
. (19)

Proof. Please refer to the Appendix for the proof. ut

Furthermore, since we have

E
((∑

iDi

)2)∑
i E(D2

i)
≤max~D

{(∑
i

Di

)2/∑
i

D2
i

}
≤ n,

where the equality holds if and only if D1 = D2 = . . . = Dn,
we can derive the worst-case ratio among all the distributions
of ~D.

Corollary 4. For any ~D, the approximation ratio given by
Theorem 3 is at most 1 + n−1

m−α+1 .

Algorithm 2 Gain Update Algorithm
Input: the current gj(i), ∀i, j, the current moving block index

im and its destination server jm.
Output: the updated gj(i), ∀i, j.

1: procedure g UPDATE
2: for ∀i 6= im, such that yi = yim do
3: for ∀j 6= yim do
4: gj(i)← gj(i)−W′

iim
5: end for
6: end for
7: for ∀i 6= im, such that yi = jm do
8: for ∀j 6= jm do
9: gj(i)← gj(i) + W′

iim
10: end for
11: end for
12: for ∀i 6= im, yi 6= yim do
13: gyim (i)← gyim (i) + W′

iim
14: end for
15: for ∀i 6= im, yi 6= jm do
16: gjm(i)← gjm(i)−W′

iim
17: end for
18: for ∀j, j 6= yim and j 6= jm do
19: gj(im) ← gj(im) +

∑
i:i 6=im;yi=jm

W′
imi
−∑

i:i 6=im;yi=yim
W′

imi

20: end for
21: Calculate gyim (im) by (17)
22: gjm(im)← −∞.
23: end procedure

Remarks: the approximation ratio provided by Theorem 3
is dependent on the distribution of the requests ~D. In the
extreme case when requests for different coded blocks are
identical, i.e., D1 = D2 = . . . = Dn, the offered approxi-
mation ratio (19) is large as shown in Corollary 4. In fact,
the ratio of E(|| ~D||21)/

∑
i E(D2

i) characterizes the demand
variation among different blocks. When this variation is large,
the approximation ratio (19) is small and our algorithm is
guaranteed to yield a good result even in the worst case.

On the other hand, when the demand variation is small,
although the offered theoretical worst-case performance bound
(19) is large, LBM can actually still generate a load balanced
solution. In fact, in this case, Di behaves uniformly cross
different blocks and simple randomized or round robin place-
ment can already achieve load balancing, so can LBM. In a
nutshell, LBM provides good solutions for most situations and
is especially beneficial when the requests for different blocks
have a large variation and are highly skewed. In Sec. IV, we
show that our request traces in the real world usually have a
small E(||~D||21)∑

i E(D2
i)

, in which case LBM will have a large benefit.

D. Further Reducing Migration Overhead

Although Theorem 2 guarantees the feasibility of the final
converged solution from Algorithm 1, in reality, we may want
to stop looping after a fixed number of iterations to limit
the number of moves produced by LBM. In this case, the

solution may not be feasible to (CP) in theory with the fij(W)
definition in (18). In order to propose an alternative scheme,
we let fij(W) in (9) be given by

frij(W) :=ε+
1

m− α
max

{ ∑
k:k 6=i;Gk 6=Gi

Wik,

∑
k:k 6=j;Gk 6=Gj

Wkj

}
, (20)

where ε is an arbitrary positive constant.

Theorem 5. If the W′ in (9) is defined with fij(W) given by
fij(W) = frij(W) in (20), and the initial content placement
satisfies (7), the solution after any iteration in Algorithm 1
will always satisfy (7).

Proof. Please refer to the Appendix for the proof. ut

Remarks: Theorem 5 implies that as long as we start from
a valid placement, we can put a maximum iteration number
in LBM and can always get feasible solutions in any iteration.
This way, we can stop the loop in Algorithm 1 when the
maximum iteration number is reached and still get a feasible
solution that satisfies constraint (7). In other words, frij(W)
allows us to trade the latency reduction off for fewer block
moves, according to a budget on migration overhead.

E. Time Complexity and Break out Method

Algorithm 1 runs in linear time with respect to the number
of coded blocks in each iteration and is very efficient. In the
main loop from Line 4 to Line 8 in Algorithm 1, it only con-
tains a finding max operation and an updating operation. The
finding max runs in linear time with respect to the searching
space and it is O(mn) since we have mn gain entries. For the
gain updating procedure described in Algorithm 2, Line 2 to
Line 11 has only O(2nm ·m) = O(2n) additions or subtractions.
Line 12 to Line 17 also has O(2n) additions or subtractions.
Line 18 to Line 22 has two updating entries with O(2nm) basic
calculations. Therefore, our Local Block Migration can finish
each iteration with O(mn) basic calculations.

The LBM is a local heuristic search and may get trapped
into some local optimum. In order to reach the global opti-
mum, some break out method [18] can be engaged. Similar
techniques in [15], [16] can be used to even improve over
the local optimum. The idea is that when a local optimum is
reached, we may keep looping in Algorithm 1 even if the max
value of gj(i) is negative. To avoid infinite loops, the blocks
that have been moved are locked. When all the blocks are
moved for once, the history of all the moves are inspected and
the placement in the history with best performance is picked.
If it is better than the former converged local solution, a better
solution is produced and a new round of the local search in
Algorithm 1 is started from the new solution.

The time complexity of the escaping method is O(mn2).
Although it will usually come to a better solution, it needs
lots of block moves, which results in high system overhead.
Moreover, as we will show in Sec. IV, the improvement of

the break out extension is limited. Therefore, our proposed
LBM is enough to produce good solutions without the break
out method.

IV. SIMULATION

We conduct simulations based on real traces collected from
a production cluster in the Windows Azure Storage (WAS)
system. It contains the request traces of 252 equal-sized
original data blocks in every seconds for a 22-hour period.
We adopt a systematic (6, 3) RS code, and the blocks will be
placed on 20 server nodes. We assume the block unavailability
rate is 5%. During degraded read when the original block is
unavailable, random load direction is applied.

Fig. 1 shows the properties of the data. Fig. 1(a) is the
average request among all the blocks. Fig. 1(b) shows the
total number of requests for each block in logarithm scale.

Fig. 1(c) is the statistical value of
E
((∑

iDi

)2)∑
i E(D2

i)
for each 2-

hour measurement period, which will influence the worst case
performance of our algorithm by Theorem 3. We can see that
it is no greater than 50 and leads to an approximation of 5.08
of our algorithm.

We first evaluate our Local Block Migration Algorithm in
terms of the reduction on the objective for several request
sample measurement periods. To evaluate the performance in
real system, we also conduct a dynamic simulation scheme
considering the remaining queues and random encounter of
degraded read events.

A. Performance of the Local Block Migration Algorithm

We test the algorithm with request statistics from several
samples of 2-hour measurement periods. By assumption of
a 5% block unavailability rate and random direction for the
degraded reads, we get the empirical mean and covariance ma-
trix of all the 378 coded blocks. We perform the Local Block
Migration Algorithm (LBM) to find the optimal placement on
each of the samples. We also utilize break out method after
the LBM algorithm converges. We compare our algorithm to
the solution by picking the best of 1000 random placement.

Fig. 2 shows how the LBM reduces the objective from a
random starting placement along with number of block moves.
The decreasing curves indicate the performance of the LBM
while the horizontal lines are the reference performance of the
best of 1000 random placement. In Fig. 2(a), for each sample,
we can spot the performance without the break out extension
from the iterations before the “sudden” rise of the moves in
Fig. 2(b).

We can see that the LBM can greatly reduce the objective
and beats the global optimal solution of the best of 1000
random placement. An interesting observation is that in LBM,
most of the reduction on the objective is achieved within
30 iterations while picking the best random placement will
typically engage more than 350 moves. For the break out
extension, it indeed produces better solution. However, since it
tries to find the global optimal, it has lots of moves. Moreover,
the reduction from the break out is limited. Therefore, for the
enterprise, we can get most of the benefit from the LBM by

0 5 10 15 20
0

2

4

6

Time Index (hour)

A
v
e
ra

g
e
 R

e
q
u
e
s
t

(a) Average request

50 100 150 200 250
10

5

10
6

10
7

Block Index (sorted)

T
o
ta

l
R

e
q
u
e
s
t

(b) Total requests of each block

0 5 10 15 20
10

20

30

40

50

Time Period Index (hour)

R
a
ti
o

(c) E
((∑

i Di

)2)/∑
i E(D2

i)

Fig. 1. The properties of the trace data collected from the Windows Azure Storage (WAS). The trace contains the number of requests of 252 equal sized
data blocks at every seconds for about 22 hours.

0 30 60 90 120 150
0.85

0.9

0.95

1

Iteration

R
e

la
ti
v
e

 O
b

je
c
ti
v
e

Sample1
Sample2
Sample3

(a) Objective v.s. Iteration

0 30 60 90 120 150
0

100

200

300

400

Iteration

M
o

v
e

s

Sample1
Sample2
Sample3

(b) Necessary Moves v.s. Iteration

Fig. 2. The performance of the Local Block Migration Algorithm with
break out extension. The horizontal lines in Fig. 2(a) indicate the reference
performance of the best of 1000 random placement and the decreasing curves
indicate the performance from the LBM. For each sample, the performance
without break out extension can be spot on iterations before the “sudden” rise
of the moves in Fig. 2(b).

only running the algorithm within a certain max number of
iteration without the break out extension.

B. A Dynamic System Scheme Simulation

We simulate the LBM in a dynamic system scheme. We
divide the 22-hour trace into 11 2-hour measurement periods.
For each measurement period, we use the statistics of the
requests from the former 2-hour measurement period as the
estimation of the current measurement period and adjust
the placement of the blocks by the LBM with maximum
iteration of 20. We simulate the system processing behavior
for each incoming request with random encounter of the block
unavailable event and random load direction for the degraded
reads. To evaluate the long term stable system, we set the
initial placement by taking the LBM optimized placement
on the statistics of the first 2-hour measurement period and
evaluate the performance for the remaining 10 measurement
periods. We compare it to two schemes. One is the pure fixed
random placement, which is a typical method in enterprise
[1]. The other is a dynamic optimization scheme in which
the placement of the blocks could be adjusted by picking the
best of 1000 random placement for each 2-hour measurement
period. We set the request processing speed of servers to be
0.7 utilized by the peak total requests.

Fig. 3(a) is the distribution of the average accessing delay
and Fig. 3(b) shows the number of block moves in each
sample. We can see that the LBM can greatly reduce the ac-
cessing delay than the typical random placement in enterprise.
The LBM can even beat the global randomized optimization

with only a small proportion of the block moved at each
measurement period while the global randomized algorithm
sometimes need lots of global shuffling to keep the placement
optimal, bringing about large system overhead and impractical.
Fig. 3(c) shows the performance of the LBM with different
settings of server processing speed characterized by different
levels of utilization.

Fig. 4 shows the average queue among the servers for all
the time slots. We can see that with LBM, the queues will gen-
erally stable and the random placement will suffer a lot when
high system request rates comes due to unbalanced server load
and bad utilization of the server processing capacities.

From all the simulation scenarios, we can see that our LBM
is a practical scheme to significantly balance the server load
and reduce the average accessing delay.

V. RELATED WORKS

Abundant works are on enhancing the storage overhead and
reducing the recover cost for the degraded reads. In [4], Local
Reconstruction Code (LRC) is proposed to reduce the storage
overhead. The works in [6], [19] focus the optimization of
the degraded reads and better load direction scheme to boost
the performance of the degraded reads was presented. M. Xia
et al. in [7] use two different erasure codes that dynamically
adapt to system load to achieve both the overall low storage
overhead and low recovery cost. HitchHiker [8] propose a new
encoding technique to improve recovery performance.

There are extensive works around the content placement
problem in replication based systems with different desired
QoS. In [20], Rochman et al. propose the strategies of placing
the resources to distributed regions to serve more requests
locally. In [21], Xu et al. propose a reasonable request mapping
and response routing scheme to maximize the total utility of
serving requests minus the cost. Bonvin et al. [22] propose a
distributed scheme to dynamically allocate the resources of a
data cloud based on net benefit maximization regarding the
utility offered by the partition and its storage and mainte-
nance cost. In [23], the automatic data placement across geo-
distributed datacenters is presented, which iteratively moves
a data item closer to both clients and the other data items
that it communicates with. B. Yang et al. [24] study the
content placement problem for systems when multiple items
are needed in each request and the item size is small. They
try to maximize the correlation of the contents stored on the

0 500 1000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Average Delay (ms)

C
D

F

LBM
Best Random
Random

(a) Average Delay Distribution

4 6 8 10 12 14 16 18 20
0

100

200

300

400

Time Index (hour)

N
u
m

b
e
r

o
f
M

o
v
e
s

LBM

Best Random

(b) Number of Moves

0 500 1000 1500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Average Delay (ms)

C
D

F

Utilization=0.6
Utilization=0.7
Utilization=0.8
Utilization=0.9

(c) Varying Utilization
Fig. 3. Statistics of the dynamic system scheme performance

0 5 10 15 20
0

500

1000

Time Index (hour)

A
v
e
ra

g
e
 Q

u
e
u
e

(a) Local Block Migration

0 5 10 15 20
0

500

1000

Time Index (hour)

A
v
e
ra

g
e
 Q

u
e
u
e

(b) Random

0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Queue Length

C
D

F

LBM
Random

(c) Distribution of the queues
Fig. 4. The simulated queue length at each time slot

same server to reduce the IO and the CPU overhead to fulfill
a request at a time. On the contrary, our work focus on the
applications in which the size of content block is large and
each request only relates to one block. And we study the
content placement for erasure coded systems.

In [9], [10] new parallel download scheme to optimize the
delay performance of coded storage are proposed. Their work
rely on parallel downloads to leverage a queueing-theoretical
gain, where each request must access k or more servers,
and abort the remaining download threads when k blocks are
obtained.

In the line of the mathematical technique, the local search
idea to solve the Max-2-Cut Problem is first proposed in [15] .
It is improved with better efficiency in [16]. W. Zhu et al. [17]
extend it to solve the mathematical Max-k-Cut Problem. In our
work, we take the local search idea to solve the problem with
challenging special constraints related to the real application
and we provide a linear time searching scheme.

VI. CONCLUSION

In this paper, we study the problem of reducing the access
latency in erasure coded cloud storage systems through content
placement optimization. Based on request rate measurements,
we have built a model to statistically reduce the expected
average accessing latency in the system, which is similar to
the NP-Complete Min-k-Partition problem with an additional
special constraint. We propose Local Block Migration which
moves the block that reduces an access latency objective the
most at each time. We theoretically characterize the worst-
case performance bound of our algorithm that depends on
a demand variation measure across blocks. Through trace-
driven simulations based on a request traces collected from
a production cluster of Windows Azure Storage, we show that
Local Block Migration can significantly reduce the content
access latency in erasure coded storage by only moving a few
blocks without global shuffling.

REFERENCES

[1] D. Borthakur, “Hdfs architecture guide,” HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, 2008.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 29–43.

[3] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci et al., “Windows azure storage:
a highly available cloud storage service with strong consistency,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 143–157.

[4] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin et al., “Erasure coding in windows azure storage.” in Usenix
annual technical conference. Boston, MA, 2012, pp. 15–26.

[5] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication:
A quantitative comparison,” in Peer-to-Peer Systems. Springer, 2002,
pp. 328–337.

[6] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: minimizing i/o for recovery and
degraded reads.” in FAST, 2012, p. 20.

[7] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A tale of two erasure
codes in hdfs,” in To appear in Proceedings of 13th Usenix Conference
on File and Storage Technologies, 2015.

[8] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran, “A hitchhiker’s guide to fast and efficient data reconstruction
in erasure-coded data centers,” in Proceedings of the 2014 ACM confer-
ence on SIGCOMM. ACM, 2014, pp. 331–342.

[9] G. Liang and U. C. Kozat, “Fast cloud: Pushing the envelope on delay
performance of cloud storage with coding,” Networking, IEEE/ACM
Transactions on, vol. 22, no. 6, pp. 2012–2025, 2014.

[10] Y. Sun, Z. Zheng, C. E. Koksal, K.-H. Kim, and N. B. Shroff, “Prov-
ably delay efficient data retrieving in storage clouds,” arXiv preprint
arXiv:1501.01661, 2015.

[11] E. Schurman and J. Brutlag, “The user and business impact of server
delays, additional bytes, and http chunking in web search,” in Velocity
Web Performance and Operations Conference, 2009.

[12] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi, “On the hardness of
approximating max k-cut and its dual,” Chicago Journal of Theoretical
Computer Science, vol. 2, p. 1997, 1997.

[13] R. M. Karp, Reducibility among combinatorial problems. Springer,
1972.

[14] V. Li, Q. SHUAI, and Y. Zhu, “Performance models of access latency
in cloud storage systems,” in Proc. Fourth Workshop on Architectures
and Systems for Big Data, 2014.

[15] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for

partitioning graphs,” Bell system technical journal, vol. 49, no. 2, pp.
291–307, 1970.

[16] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Design Automation, 1982. 19th Con-
ference on. IEEE, 1982, pp. 175–181.

[17] W. Zhu, G. Lin, and M. Ali, “Max-k-cut by the discrete dynamic
convexized method,” INFORMS Journal on Computing, vol. 25, no. 1,
pp. 27–40, 2013.

[18] P. Morris, “The breakout method for escaping from local minima,” in
AAAI, vol. 93, 1993, pp. 40–45.

[19] Y. Zhu, J. Lin, P. P. Lee, and Y. Xu, “Boosting degraded reads in
heterogeneous erasure-coded storage systems.”

[20] Y. Rochman, H. Levy, and E. Brosh, “Resource placement and assign-
ment in distributed network topologies,” in INFOCOM, 2013 Proceed-
ings IEEE. IEEE, 2013, pp. 1914–1922.

[21] H. Xu and B. Li, “Joint request mapping and response routing for
geo-distributed cloud services,” in INFOCOM, 2013 Proceedings IEEE.
IEEE, 2013, pp. 854–862.

[22] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,” in
Proceedings of the 1st ACM symposium on Cloud computing. ACM,
2010, pp. 205–216.

[23] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services.”
in NSDI, 2010, pp. 17–32.

[24] B. Yu and J. Pan, “Location-aware associated data placement for geo-
distributed data-intensive applications,” in Proc. of IEEE Infocom 2015,
2015.

APPENDIX A
PROOF TO PROPOSITION 1

Comparing the (CP) and the (CMKP+), their optimization
variables have the same shape. In (CP), only (3) and (4) limit
the feasible region of the solutions, which are the same to those
in (7) and (8) in the (CMKP+). Hence the (CP) and (CMKP+)
have the same feasible region of the solutions. We will show
that every feasible solution has the same object value in both
the problems to complete the proof.

For any solution {y1, y2, . . . , yn}, consider any k ∈ N+,
k ≤ m and consider the corresponding group of coded blocks
{i|yi = k,∀i}, the contribution of the group to (1) is

1

2
E(Lk) =

1

2
E
((∑

j:yj=k

Dj

)2)
=
1

2

∑
i:yi=k

∑
j:yj=k;j 6=i

E(Di ·Dj) +
1

2

∑
i:yi=k

E(D2
i)

=
∑

i<j:yi=yj=k

Wij +
1

2

∑
i:yi=k

Wii,

which is exactly the contribution in (6). After summing up
over k, we can get that the object of (1) and (6) have the same
value of the given feasible solution. �

APPENDIX B
PROOF TO THEOREM 2

We will prove it by contradictory. Suppose {y1, y2, . . . , yn}
is the converged solution, in which, without loss of generality,
there exists is and js, such that yis = yjs and Gis = Gjs .

We further assume∑
k:k 6=is;Gk 6=Gis

Wisk ≤
∑

k:k 6=js;Gk 6=Gjs

Wkjs .

For simplicity of presentation, we define S(is) as the set
of the index of the servers where no blocks from the same
group of im is placed at. Considering the sum of the gains of
moving is to all the servers in S(is), we have∑

k∈S(is)

gk(is)

≥ (m− α+ 1)
∑

k:yk=yis ;k 6=is

W′
isk −

∑
k:Gk 6=Gis

W′
isk

≥ (m− α+ 1)W′
isjs −

∑
k:Gk 6=Gis

Wisk

≥ (m− α+ 1)ε > 0,

which indicates that there exists a k ∈ S(is), such that
gk(i) > 0. This is contradictory to the assumption that
{y1, y2, . . . , yn} is a solution to Algorithm 1 since the when
the algorithm terminates, there is no positive gj(i). �

APPENDIX C
PROOF TO THEOREM 3

We provide two lemmas before the proof.

Lemma 6. The solutions from the Local Block Migration
Algorithm are solutions to (MKC) with performance ratio of
1− 1/m.

Proof. Suppose that {y1, y2, . . . , yn} is one of the converged
solution. Consider the group of coded blocks whose index is
{i|yi = k} for some sever index k and the related weights.
By the local optimality, ∀k′ 6= k, we have∑

i:yi=k

∑
j:yj=k′

W′
ij ≥

∑
i:yi=k

∑
j:yj=k

W′
ij .

Since there are m − 1 possible k′ values, by adding up (21)
over all k′ 6= k, we have∑

i:yi=k

∑
j:yj 6=k

W′
ij ≥ (m− 1)

∑
i:yi=k

∑
j:yj=k

W′
ij . (21)

Diving (21) by m − 1 and adding
∑
i:yi=k

∑
j:yj 6=k W′

ij on
both sizes, we have

m

m− 1

∑
i:yi=k

∑
j:yj 6=k

W′
ij ≥

∑
i:yi=k

∑
j

W′
ij . (22)

By summing up (22) for all k and dividing it by 2, we have
m

m− 1

∑
i<j

W′
ij(1− δ(yi − yj)) ≥

∑
i<j

W′
ij ≥ OPTC ,

where OPTC is the optimal value for the Max-k-Cut problem.
Therefore∑

i<j

W′
ij(1− δ(yi − yj)) ≥ (1− 1

m
)OPTC .

ut

Lemma 7. Given fij(W) is defined as (18), for any arbitrary
positive number ε,∑

i6=j

W′
ij ≤ ε+

m

m− α+ 1

∑
i 6=j

Wij .

Proof. By (9) and (18), we have∑
i6=j

W′
ij ≤

∑
i 6=j

Wij +
∑
i

∑
j:j 6=i;Gj=Gi

W′ij

≤
∑
i 6=j

Wij+

∑
i

∑
j:j 6=i;Gj=Gi

(
ε+

1

m− α+ 1

∑
k:k 6=i;Gk 6=Gi

Wik

)
≤
∑
i 6=j

Wij +
α− 1

m− α+ 1

∑
i 6=j

Wij + (α− 1)nε

=ε′ +
m

m− α+ 1

∑
i 6=j

Wij .

ut

Here is another property for the weight matrix W.∑
i6=j

Wij

/∑
i

Wii =
∑
i 6=j

E(DiDj)
/∑

i

E(D2
i)

=
(
E
((∑

i

Di

)2)−∑
i

E(D2
i)
)/∑

i

E(D2
i)

=
E
((∑

iDi

)2)∑
i E(D2

i)
− 1. (23)

We are now ready for the proof to the Theorem 3
First, by Theorem 2, the converged solutions from the Local

Block Migration Algorithm are always feasible solutions to the
(CMKP+). The following part is remained for the proof for
the performance ratio of the solutions.

Let OPTP be the optimal value for the (MKP). By Lemma 6
and (16), we have∑
i<j

W′
ij−
∑
i<j

W′
ijδ(yi−yj) ≥

(
1− 1

m

)(∑
i<j

W′
ij−OPTP

)
.

(24)
Reducing (24) and adding 1

2

∑
i Wii, we have∑

i<j

W′
ijδ(yi − yj) +

1

2

∑
i

Wii

≤
(
1− 1

m

)(
OPTP +

1

2

∑
i

Wii

)
+

1

m

(∑
i<j

W′
ij +

1

2

∑
i

Wii

)
.

(25)

By the W property in (23) and Lemma 7, we have∑
i<j

W′
ij +

1

2

∑
i

Wii

≤ε+ m

m− α+ 1

∑
i<j

Wij +
1

2

∑
i

Wii

≤ε+ m

m− α+ 1

(
E
((∑

iDi

)2)∑
i E(D2

i)
− 1

)
· 1
2

∑
i

Wii +
1

2

∑
i

Wii

≤ε+
(

m

m− α+ 1

(
E
((∑

iDi

)2)∑
i E(D2

i)
− 1

)
+ 1

)
· 1
2

∑
i

Wii.

(26)

By the feasibility of the solution, we also have∑
i<j

W′
ijδ(yi − yj) =

∑
i<j

Wijδ(yi − yj). (27)

By (25), (26) and (27), we have

∑
i<j

Wijδ(yi − yj) +
1

2

∑
i

Wii

≤ε′ +
(
1 +

1

m− α+ 1

(
E
((∑

iDi

)2)∑
i E(D2

i)
− 1

))
·(

1

2

∑
i

Wii + OPTP

)
. (28)

With the current setting of W′, the optimal solution for
the (MKP) is also a feasible solution to the corresponding
(CMKP+) problem , and also optimal solution to (CMKP+).
Combine it with the fact that ε is an arbitrary positive constant
and the result in (28), we complete the proof. �

APPENDIX D
PROOF TO THEOREM 5

We will show that at every iteration, if the solution from the
former iteration satisfy (7), in the current iteration, for every
gain relating to the move of violating (7), there exists at least
one other move that has larger gain and does not violate (7).

Without loss of generality, consider all the gains of moving
the block is to any other server. There are two types of
destination servers. One is containing the block within the
same group of is and the other not. For all the destinations
not containing the block within the same group of is, denoted
as S(is), we have

1

m− α
∑

k∈S(is)

gk(is)

≥ 1

m− α
(
(m− α)

∑
k:yk=yis ;k 6=is

W′
isk −

∑
k:Gk 6=Gis

W′
isk

)
=

∑
k:yk=yis ;k 6=is

W′
isk −

1

m− α
∑

k:Gk 6=Gis

W′
isk

=
∑

k:yk=yis ;k 6=is

W′
isk −

1

m− α
∑

k:Gk 6=Gis

Wisk.

By the definition of W′ and (20), for any destination ks
containing a block js within the same group of is, we have

gks(is) =
∑

k:yk=yis ;k 6=is

W′
isk −

∑
k:yk=ks

W′
isk

≤
∑

k:yk=yis ;k 6=is

W′
isk −W′

isjs

≤
∑

k:yk=yi;k 6=i

W′
ik − ε−

1

m− α
∑

k:k 6=is;Gk 6=Gis

Wisk.

Therefore 1
m−α

∑
k∈S(is) gk(i) > gks(i), which indicates

that there exists at least one move with better gain and does
not violate the constraint, completing the proof. �

