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Abstract—Many distributed interactive multimedia applica-
tions, such as live video conferencing and video sharing, require
each participating client to transmit its captured video stream to
other clients via relay servers. We consider connecting multiple
clients through a multiple relay servers and study the server
selection problem from a dense pool of CDN edge locations and
datacenters to reduce the end-to-end delays between clients. To
achieve scalability in the presence of a large number of candidate
servers, we formulate server selection as a geometric problem in
a delay space instead of in a graph, which turns out to be an
extension of the well known Euclidean k-median problem. We
propose practical approximation schemes when using only one
or two servers with theoretical worst-case guarantees as well
as fast heuristics when using k servers. We demonstrate the
benefit of our optimized multi-server selection schemes through
extensive evaluation based on real-world traces collected from
the PlanetLab and Seattle platforms, containing personal mobile
devices, as well as real network experiments based on a prototype
implementation.

Index Terms—Interactive video streaming; Server selection;
End-to-end delay; Geometric optimization.

I. INTRODUCTION

In many interactive multimedia streaming applications, such
as live video/audio conferencing and interactive video gaming,
each of the geographically distributed clients needs to receive
a video/audio stream from all other clients in real time. A
common objective of these applications is to reduce the end-to-
end delays between clients to the minimum, while maintaining
a sufficiently high data throughput, especially when users are
spread across different regions [1]–[3]. In production systems
like FaceTime and Google+, relay servers [1], [2] are adopted
to collect data from all the participating users and distribute a
mixed stream to every user. As compared to the earlier peer-to-
peer (P2P) solutions, such a server-based solution has several
benefits. First, each user can upload its data stream at the
full rate to the server and does not need to split its uplink
bandwidth to serve all other users like in a P2P architecture.
Second, major application providers such as Apple, Google,
and Microsoft usually have their own large server clouds
composed of point of presence (POP) locations in their content
delivery networks (CDNs) and datacenters, connected in well-

provisioned and high-bandwidth backbone networks. Third,
a large part of mixing and processing jobs can be done by
servers, relieving the computational burden of users.

In this paper, we ask the questions—how can the choices
of server locations affect end-to-end delays between clients
in interactive video/audio streaming applications? Is a single
server sufficient, or can we reduce end-to-end delays by using
multiple relay servers spread at different locations? And where
should these relay servers be placed? As a toy example, if 3
clients in Paris are in a meeting with 3 other clients in Sao
Paulo, having two inter-connected servers placed in the two
cities, respectively, clearly achieves a lower mean end-to-end
network distance than placing a single server at some place in
between the two cities. However, how this network-distance
phenomenon can affect delay performance in general is yet to
be investigated.

Formally speaking, we aim to minimize the mean end-to-
end delay in an interactive video streaming session between
N clients, by optimally choosing k servers from a dense cloud
of CDN nodes (POP locations and datacenters). This problem
has been studied in [4] on a graph formed by all the clients and
candidate servers, assuming the latency between every pair of
nodes is known. It is shown that this new problem is different
from the well-known k-median and k-means problems, and is
NP-complete for any k < N . A greedy algorithm performed
on the graph is given in [4] with an approximation ratio of 2
if triangle inequalities are assumed. However, the complexity
of this graph-based solution critically depends on the number
of candidate servers, which can increase dramatically as the
candidate server pool grows to a size of hundreds, thousands
or even more. For example, Akamai has deployed a pervasive,
highly distributed CDN with over 175, 000 servers in more
than 100 countries within over 1, 300 networks [5].

In this paper, we propose a novel geometric approach to
multi-server selection in order to achieve scalability in the
presence of a large and dense server cloud consisting of
CDN nodes and datacenters. By leveraging network coordinate
systems [6], each host can be mapped onto a point in a delay
space. Using geometric optimization, we compute the ideal
locations of k servers for N clients in the delay space. We
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finally map the computed ideal server locations back to the
closest physical servers to form server selection decisions.
Unlike graph-based solutions, the complexity of the proposed
geometric optimization in the delay space is independent of
the number of candidate servers. Moreover, we do not need
to measure the latencies from every client to all candidate
servers; it suffices to probe a few reference servers to estimate
the network coordinate of each client in the delay space, which
can be efficiently computed or even pre-computed by many
existing network coordinate systems.

It turns out that the proposed geometric problem in the delay
space is an extension of the k-median and facility location
problems, for which no polynomial-time solution is known
[7]. We provide simple approximation schemes for this new
geometric problem, and prove that the one-server optimal
solution incurs a mean delay of at most 2 − 2/N times the
best possible value of using N servers forming a full mesh.
If two servers can be used, we provide a 2.5-approximation
scheme based on centroids, and a one-or-two-server scheme
with an approximation ratio of strictly less than 2−2/N . When
k (k > 2) servers are adopted, we further propose efficient
heuristic algorithms to choose k servers based on k-means
partitioning and convex optimization.

To evaluate our server selection algorithms under vari-
ous random errors, including network coordinate errors and
mapping errors, we perform extensive simulations driven by
latency traces collected from 490 PlanetLab nodes over a 15-
day period as well as traces collected from the Seattle platform
[8] which include latency measurements from personal and
mobile devices. We observe that despite network coordinate
errors, triangle inequality violations (TIV), as well as mapping
errors from ideal to true server locations, the benefit of our
optimized server selection in the delay space can largely offset
these errors. Moreover, the proposed server selection proce-
dure is efficient and can finish all the tasks within 1 second
for a server pool of close to 500 nodes. To further verify
real packet delays including system processing and queueing
delays, we have implemented a prototype interactive video
streaming system leveraging multiple servers and deployed it
on the PlanetLab. We observe that when server locations are
optimally determined, not only can multiple servers reduce
mean end-to-end delays, but they also help to distribute CPU
workloads as the video bit rate increases.

II. RELATED WORK

Current production interactive video streaming systems
adopt different architectures according to the measurement
study in [1]. iChat does not use servers and adopts a P2P
star topology. Skype uses centralized servers to relay video
traffic, yet with all servers found to be placed in the same
location [1]. Google+ adopts multiple servers distributed all
over the globe to relay all the data in a session. But its server
selection strategy is proprietary and unknown to the public.
Other measurement studies have analyzed interactive video
streaming with respect to latency, bandwidth and video quality.
In [9], the responsiveness of Skype video calls to bandwidth
variations is measured. In [10] an extensive measurement

of Skype two-party video calls is presented under different
network conditions. [11] shows that people will easily get
impatient when they face long end-to-end delay. In addition,
[12], [13] analyze the overlay architecture, P2P protocol, and
VoIP traffic of Skype. In this paper, we provide an in-depth
study on server location optimization specifically to minimize
delays in interactive video streaming, based on a multi-server
mesh topology.

Sever placement and selection have been extensively studied
for a variety of applications and topics. Various placement
strategies for Web server replicas have been proposed in [14]
to improve CDN performance. [15] presents a distributed algo-
rithm that selects game servers for a group of clients in order
to minimize the server resource usage with real-time delay
constraints. [16] proposes a server selection scheme which can
achieve high availability while maintaining low delays and low
cost. [17] considers the server allocation problem with dense
servers and clients, and has developed an algorithm based on
the high-rate vector quantization theory. In contrast, in this
paper we specifically focus on selecting the optimal server
locations in real-time interactive video streaming applications.

The design of interactive video streaming systems, espe-
cially live conferencing, has been extensively studied in the
context of P2P networks [18], [19] within a utility maximiza-
tion framework, in order to optimize the streaming rates of
the clients subject to network bandwidth constraints. Recent
research has used cloud computing and datacenter networks to
enhance the performance of interactive video streaming. Airlift
[20] leverages inter-datacenter networks to relay traffic and
process data streams for video conferences. It maximizes the
total throughput in multiple conference sessions by choosing
the optimal routes to deliver and relay packets in the inter-
datacenter network, subject to end-to-end delay constraints.

In contrast, in this paper we consider a server pool that is
much larger than a few datacenters and may consist of a large
number of CDN POP locations. A piece of closely related
work [21] also adopts a cloud of servers, called the Virtual
Mixer, to enhance delay performance in a video conference.
In particular, it tries to minimize either the average or the
maximum end-to-end delay using a heuristic based on Steiner
tree optimization performed on a graph of servers and clients.
However, this heuristic has no performance guarantee. Neither
is it scalable to a graph formed by a large number of CDN
servers.

A similar server selection problem for distributed interactive
applications is studied in [4] to select k servers from a graph
formed by all candidate servers and clients. It is proved
[4] that the graph version of this problem is NP-complete
when k < N or under some other conditions. A greedy
approximation scheme has been proposed to solve the problem
in graph with a complexity that grows fast as the size of the
server pool increases. Our work is similar to this work in
that we also use a server cloud to improve delay performance
of interactive multimedia applications. However, we propose
a novel geometric optimization procedure conducted in a
geometric delay space, achieving better scalability as the
number of utilizable servers increases.
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Fig. 1. The illustration of our multi-server topology, where multiple servers are chosen from the cloud to serve each session. “T” is a client and “S” is a
server. The arrows illustrate the data flow paths between clients.

III. PROBLEM FORMULATION

There are several media distribution models for interac-
tive video streaming, including architectures based on cen-
tralized servers, end-system mixing and peer-to-peer (P2P).
A centralized-server solution [1], [22] collects user media
using a relay server, performs signal processing (e.g., silent
suppression) on the data streams and mixes them to be sent
out to different clients. End-system mixing places the mixer on
one of the clients. However, in many sessions, there may be no
particularly well-endowed peer. A P2P solution adopts a full-
mesh topology, in which each client sends its data to all the
other clients directly. However, a P2P solution is apparently
not scalable, especially for mobile clients, since as the number
of clients N grows, each client has to split its limited upload
bandwidth capacity to serve N − 1 other clients, leading to
vanishing pairwise throughput [2].

A. The Multi-Server Mesh Topology

In this paper, we consider using a “multi-server mesh” to
serve the interactive video streaming session, which combines
the advantages of both centralized servers and P2P architec-
tures, as illustrated in Fig. 1(a).

Definition 1. (Multi-Server Mesh) Every client is connected
to only one server and no other host. The servers form a full
mesh. In this topology, each client sends its own data to its
server. For each server S, if it receives data from a client T ,
the data is forwarded to all the other hosts connected to this
server, including servers and clients, excluding T . If server S
receives data from other servers, the data is forwarded only
to the clients directly connected to S.

According to the above topology and protocol, a client
connected to S transmits a packet to another client connected
to S in two hops via S, and transmits a packet to another
client connected to another server S′ in three hops via S and
S′. There are two benefits of the above multi-server topology,
namely throughput advantage and latency improvement.

From a throughput perspective, since each client only needs
to upload one copy of its data to one server, it does not suffer
from the upload bottleneck as in the P2P case. As servers
are connected in well-provisioned backbone infrastructures,
transfers between servers are also free of bottleneck. Unlike
the multi-server topology in [21] which allows a client to relay
traffic for other clients, we require each client to only talk to
its assigned server. If a certain client i is not connected to
any server and is connected to some other client j, client j

will relay traffic for client i, leading to an upload bottleneck at
client j. More formally, suppose that a client i is not connected
to any server, while the other clients are connected in an
arbitrary way with or without servers. In this case, we can
easily give an example where the bandwidth capacity of this
network is not fully utilized as follows:

Consider the case that the download capacity Di of each
node is greater than the sum of upload capacities of other
nodes, i.e., Di >

∑
j 6=i Uj , and the servers have high band-

width connections. Then the total throughput supportable by
the network is

∑
i

∑
j 6=i Uj , since each node can at most

download at the rate min{Di,
∑
j 6=i Uj}. Let us show that

the maximum supportable total throughput
∑
i

∑
j 6=i Uj can

not be achieved. To achieve the maximum throughput, client
i must be able to download at the rate

∑
j 6=i Uj . Since it is

not connected to any server, it must use up all the upload
capacities of other clients. As a result, other clients have no
spare capacity to upload anything to any server. Since no
server plays a role in this case at all, the usable upload capacity
is only

∑
i Ui, which cannot support a total download rate of∑

i

∑
j 6=i Uj .

From the latency perspective, the servers form a full mesh
to minimize the transfer delays between any pair of servers.
By adjusting the choice of server locations, we can effectively
reduce the end-to-end delays between all clients in the formed
multi-server topology that supports relatively high throughput.
In addition, the servers can be extended to process data indi-
vidually or collaboratively. Since our focus is on the network
aspect, we do not discuss the details of signal processing and
mixing functions.

B. Server Placement as Delay-Space Geometric Optimization

Since an interactive video streaming solution may utilize
a large pool of servers from datacenters, CDN nodes, and
dedicated servers, we can assume the utilizable servers are ge-
ographically densely distributed. It would be computationally
expensive for any graph algorithms such as packing spanning
trees or Steiner trees to select servers in the existing dense
graph of a large server pool.

Given a set of N clients as input, this paper considers a
completely different geometric approach to compute where the
servers should be placed in a delay space, where each host
has a coordinate, whether it be a server or client. The distance
between two hosts in the delay space can predict their latency
on the Internet. We can employ network coordinate systems
(NCSs) [23] to compute the coordinates for a set of hosts
given their pairwise ping data. For example, Vivaldi [6] is a
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representative distributed NCS, and is deployed in many well-
known Internet systems, e.g., Bamboo DHT [24] and Azureus
BitTorrent [25].

Let vector xi = (x1i , ..., x
D
i ) ∈ RD denote the coordinate

of client i in the formed delay space. Each utilizable server
has a coordinate as well. In Vivaldi, a new node only needs to
collect the latency information from a few other existing nodes
to compute its own coordinate. In other words, Vivaldi embeds
the hosts into a delay space RD based on a relatively sparse
matrix of latencies between the hosts. Although it is believed
that a Euclidean space of low dimension (e.g., D = 2, 3, 5)
may embed the hosts with errors, due to triangle inequality
violation [6], [25], in Sec. V through large-scale measurement
data, we will show that despite coordinate mapping errors, our
proposed server selection algorithms can still reduce latency
in interactive video streaming sessions.

Suppose that X = {x1, . . . , xN} is a given set of coordi-
nates of N clients in the delay space. Under the topology
in Definition 1, our problem is to find a partition P =
{C1, C2, ..., Ck} of the client set X , together with a set
of vectors Y = {y1, y2, ..., yk}, where yj (j = 1, . . . , k)
denotes the server location for class Cj , such that the sum
(or the mean) of end-to-end delays between all the clients is
minimized. Given P and Y , there is a mapping y : X → Y ,
where y(xi) is the server location of the class to which client
xi belongs. The problem is formally stated as

min
P,Y

1

2

∑
i 6=j

(
‖xi − y(xi)‖+ ‖y(xi)− y(xj)‖+ ‖xj − y(xj)‖

)
(1)

subject to |Y | ≤ k,

where k is the maximum number of servers to be used.
When k = N , a trivial solution is to place a server just

beside (arbitrarily close to) each client and connect each client
to its server. Since a full mesh is formed among the N servers
that are directly connected to each other, the sum of end-to-
end delays between all clients reaches the minimum. However,
it is costly to engage so many servers. Since deploying each
server is associated with a cost of launching a VM instance on
a certain physical machine in the cloud, we aim to provide a
solution under a server number constraint k < N . Note that it
is proved [4] that the graph version of Problem (1), in which
a number of candidate servers and clients are connected in a
graph with pairwise distances known, is NP-complete for any
2 ≤ k < N .

Once the ideal server locations are computed in the delay
space, we can choose the nearest (in terms of delay) real
servers in the physical network, and connect them to the clients
according to the topology in the optimal solution. Note that
the entire procedure is light-weight as long as the geometric
Problem (1) can be efficiently solved. Since server coordinates
are usually stable and can be routinely maintained prior to the
session, we only need to compute the coordinates of the few
participating clients using Vivaldi when they join the session.
This procedure is efficient, since for each client, we only need
to measure its RTTs to a few reference servers to obtain its
coordinate in a network coordinate system. Moreover, unlike

the graph version, the complexity of solving Problem (1) in
space is independent of the number of available candidate
servers. Even though the network coordinate system has errors,
e.g., due to the violation of triangle inequality on the Internet
and inaccuracy of network embedding, we will show the
capability of our proposed optimization procedure in terms of
reducing overall latencies, despite network coordinate errors,
through extensive performance evaluation.

C. Relationships to Euclidean k-Median and Facility Location

For 2 ≤ k < N , as the decision variables include both
the partition P and server locations Y , Problem (1) is a non-
convex combinatorial problem in general. Note that Problem
(1) appears to be similar to the famous k-median problem
and facility location problem [7], yet is even more complex
than them. In fact, if we ignore the delays between servers
in (1), Problem (1) is reduced to the famous Euclidean k-
median clustering problem, which is proved to be NP-hard as
well as being hard to approximate to within arbitrary constant
factor [7]. On the other hand, if we fix the partition P , (1)
becomes the Euclidean multi-facility location problem [26],
which is a convex problem. However, our problem is even
harder because the partition P is also a decision variable. To
the best of our knowledge, there is no known efficient solutions
or even approximation schemes to the proposed Problem (1)
in space.

IV. SERVER PLACEMENT IN THE DELAY SPACE

We propose a number of algorithms to compute the ideal
server locations in the embedded delay space, from one-server
algorithms to two-server algorithms, with theoretical perfor-
mance guarantees. We further propose practical heuristics that
can place more than two servers efficiently. Given the set of
clients, all the proposed schemes compute the ideal server
locations in the delay space by approximately solving Problem
(1), and then map each ideal server location to the nearest real
physical server.

A. One-Server Algorithms

The current common solution to interactive video streaming
in practice uses a single server location. A simple solution is
to set the server location as the centroid of all clients:

Algorithm 1. (One-Server Centroid) Set the server location
to be y =

∑
xi∈X xi/N .

A direct improvement is to solve Problem (1) with k = 1.
When k = 1, Problem (1) becomes

min
y

1

2

∑
xi,xj∈X,i 6=j

(‖xi − y‖+ ‖xj − y‖), (2)

where y is the location of the single server, or equivalently,

min
y

(N − 1)
∑
xi∈X

‖xi − y‖, (3)

which is a convex program to find the geometric median of the
client set X . Since y is the median if and only if

∑N
i=1(xi −
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y)/‖xi − y‖ = 0, we can perform a fixed-point iteration on
the above equation to compute y, which is sometimes referred
to as Weiszfeld’s algorithm [27]:

Algorithm 2. (One-Server Median/One-Server Optimal)
Use the following iteration to get the server location y:

y :=

( N∑
i=1

xi
‖xi − y‖

)/( N∑
i=1

1

‖xi − y‖

)
(4)

Let D1opt and D1 denote the sum of end-to-end delays
achieved by One-Server Median and One-Server Centroid,
respectively. Let DN denote the sum of end-to-end delays
in the full-mesh topology where all the clients are directly
connected. DN can be regarded as the minimum value of (1)
if N servers are used, i.e., k = N . DN is achieved if a server
is placed arbitrarily close to each client and all the servers
form a full mesh directly connecting each other. Thus, DN

is the minimum possible sum of end-to-end delays among all
cases, since no server placement can beat connecting all client
pairs directly in terms of delay. We will compare D1opt and
D1 against the best delay DN .

Proposition 1. Given any N clients x1, . . . , xN , we have
D1opt

DN
≤ D1

DN
≤ 2− 2

N
, (5)

where the left inequality achieve equality if and only if the
centroid coincides with the median, while the right inequality
achieves equality when all the clients are distributed on two
points.

Proof: For the right inequality, using triangle inequalities,
we have

D1 = (N − 1)
∑
xi∈X

∥∥∥∥xi −
∑
xj∈X xj

N

∥∥∥∥
=

2(N − 1)

N
· 1
2

∑
xi∈X

∥∥ ∑
xj∈X

(xi − xj)
∥∥

≤ 2(N − 1)

N
· 1
2

∑
xi,xj∈X

‖(xi − xj)‖ =
2(N − 1)

N
DN ,

where the equality is achieved if and only if vector xi − xj
and vector xi − xk, ∀i, j, k, have the same direction or either
of them is zero, which is equivalent to that all the clients are
distributed on two points. The left inequality is obvious.

Remarks: Proposition 1 shows that both One-Server Me-
dian and One-Server Centroid are (2 − 2/N )-approximation
schemes to Problem (1) for any k. Moreover, One-Server
Median, although being optimal using one server, has the same
worst-case performance as One-Server Centroid. Finally, it is
worth noting that even if we use N servers each serving one
client to achieve the best possible delay, the delay reduction
as compared to using one server is no more than 2×.

B. Two-Server Algorithms

One-server algorithms may perform poorly when the clients
tend to distribute in separable clusters. If we slightly increase
the budget and use two servers, it is not hard to check that

Problem (1) becomes

min
{C1,C2,y1,y2}

(N − 1)

( ∑
xi∈C1

‖xi − y1‖+
∑
xi∈C2

‖xi − y2‖
)
(6)

+mn‖y1 − y2‖,

where m := |C1| and n := |C2| are the numbers of clients
in classes C1 and C2, respectively. Problem (6) is still a hard
combinatorial problem, in which server locations and the way
we partition clients will both affect the sum of end-to-end
delays. We provide a centroid-based approximate solution and
bound its performance. To simplify notations, we set

A =
1

2

∑
xi,xj∈C1

‖xi − xj‖, B =
1

2

∑
xi,xj∈C2

‖xi − xj‖

C =
∑

xi∈C1,xj∈C2

‖xi − xj‖.

Clearly, we have DN = A+B + C.
To judge how good a partition is, we define separability as

β(C1, C2) :=
C

2mn

/(
A

m2
+
B

n2

)
, (7)

which represents the ratio between (normalized) cross-cluster
distances and in-cluster distances. Intuitively, the greater the
β(C1, C2), the further apart the clusters C1 and C2. We
describe our two-server algorithm in Algorithm 3.

Algorithm 3. (Two-Server Centroids) First, choose the
partition {C1, C2} to maximize β(C1, C2). Then choose the
centroid as the server location in each class, i.e., set y1 =∑
xi∈C1

xi/m and y2 =
∑
xi∈C2

xi/n.

Since the number of clients in a session (e.g., a live
conference) is usually no more than a few, the first step is
easy to perform, for example, simply by enumerating all the
partitions {C1, C2} to find the one with the maximum β. For
example, even with 10 clients, there are only 512 different
partitions to go through. In Sec. V, we will show that our
proposed algorithms always finish within 1 second for up to
12 clients.

Let D2 denote the sum of end-to-end delays achieved by
Algorithm 3. Again, we analyze D2 as compared to DN .

Proposition 2. For any client set X , we have D2

DN
< 2.5.

Please refer to the appendix for the proof.
Remarks: Proposition 2 shows that Two-Server Centroids

is at least a 2.5-approximation scheme to Problem (1) for any
k ≥ 2. However, there is really no information about whether
Two-Server Centroids is better than one-server algorithms or
not. According to the proof of Proposition 2, Two-Server
Centroids may not outperform one-server algorithms in some
cases. The underlying reason is that although the two-server
optimal solution is certainly no worse than the one-server
optimal solution, Problem (1) with |Y | = 2 is an extension of
the 2-median problem, while k-median is NP-hard [7]. Without
any known efficient algorithm to compute the 2-server optimal
solution, we cannot conclude if the centroids of two servers
are better than one-server optimal solution: if the clients are
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distributed in two clusters, two servers are better; if they are
more mingled, even forming multiple (more than 2) clusters,
one server is better. We will see this effect in Sec. V through
simulations.

We now present a simple algorithm that guarantees to beat
Algorithm 2 in theory.

Algorithm 4. (One-Or-Two-Server) Use either Algorithm 2
or Algorithm 3, whichever produces a smaller sum of end-to-
end delays.

Denote D12 = min{D1opt, D2} as the sum of end-to-end
delays achieved by Algorithm 4. Then we have:

Proposition 3. For any client set X , we have

D12

DN
= min

{
D1opt

DN
,
D2

DN

}
< 2− 2

N
, (8)

Remarks: The worst-case performance of Algorithm 4 is
now strictly less than 2 − 2/N , because when D1opt/DN

achieves its maximum value of 2−2/N , all clients must reside
on two points, and in this case, it is easy to check that D2/DN

is smaller than 2− 2/N .
Although a tighter bound on the worst-case D12/DN is

hard to derive, we can characterize the improvement of
Algorithm 4 over Algorithm 2 (One-Server Median). Since
D12 = min{D1opt, D2}, we only need to bound D1opt/D2

from above. If D1opt/D2 ≤ α, we can say Algorithm 4 can
reduce delay by a factor of at most α.

Suppose {C1, C2} is the partition of clients found by
Algorithm 3. Let y represent the centroid of X , and let y1
and y2 represent the centroids of C1 and C2, respectively. Let
m = |C1| and n = |C2| be the numbers of clients in C1 and
C2, respectively. To simplify notation, define D,E and F as

D :=
∑
xi∈C1

‖xi − y1‖, E :=
∑
xi∈C2

‖xi − y2‖, F := ‖y1 − y2‖

Similar to β, we define another separability measure

β′(C1, C2) :=
F

D/m+ E/n
, (9)

which will be used to derive the improvement ratio of Algo-
rithm 4 over one-server algorithms. Due to the hardness of
the problem, we are able to provide results for up to N = 6
clients:

Proposition 4. For a given client set X , run Algorithm 3. If
1 = m < n ≤ 3, we have

D1

D2
≤ 1

n+ β′
·

√n2 + ( 2

n+ 1

)2

β′2 +

(
2n− 2

n+ 1

)
β′

 ,

(10)
and the bound is the best possible; if 1 < m ≤ n ≤ 3, then

D1

D2
≤ m+ n− 1

(m+ n− 1)m+mnβ′

·

√m2 +

(
2n

m+ n

)2

β′2 +

(
2mn− 2n

m+ n

)
β′

 ,

(11)

and the bound is the best possible.

Please refer to the appendix for the proof of Proposition 4.
Since D1opt ≤ D1, the right hand sides of (10) and (11) also
upper-bound D1opt/D2, which is the performance improve-
ment of Algorithm 4 over One-Server Median. We can get the
following corollary immediately:

Corollary 5. For a given client set X , run Algorithm 3. If
1 ≤ m ≤ n ≤ 3 with m+ n = N and β′ →∞, we have

D1opt

D2
≤ D1

D2
≤ 2− 2

N
. (12)

Proof Sketch: By analyzing the derivatives, it can be shown
that the right hand sides of both (10) and (11) reach the same
maximum value of 2− 2/N when β′ →∞.

Remarks: Corollary 5 implies that Algorithm 4 suffices
to achieve the best improvement factor of 2 − 2/N over
One-Server Optimal. The best improvement is achieved when
β′ → ∞. In this case, compared to the distance between
two clusters, the clients are almost distributed on two points,
and thus using 2 servers is equivalent to using N servers.
According to Proposition 1, the best improvement of using
N servers is also achieved in this extreme case. However,
since in reality β′ is usually finite, the improvement factor of
Algorithm 4 over One-Server Optimal will not be as significant
as using more servers.

C. Multi-Server Placement

When we need to place more than two servers, we may
use the k-means clustering heuristic to quickly partition the
clients into k classes, although k-means aims to find a partition
to minimize the sum of delays from the clients to their
corresponding class centroids, which is different from our
objective of minimizing the sum of end-to-end delays. Once
the partition is obtained, it is not hard to check that Problem
(1) using k servers is reduced to the convex program of finding
the server locations Y = {y1, . . . , yk}:

min
{y1,...,yk}

(N − 1)

k∑
j=1

∑
xi∈Cj

‖xi − yj‖

+

k∑
i=2

i−1∑
j=1

|Ci| · |Cj | · ‖yi − yj‖ (13)

Clearly, once the partition P = {C1, . . . , Ck} is fixed, the
objective of (13) is a convex function of yi. Problem (13) can
be solved efficiently using standard convex problem solvers,
with the initial server locations set as the class centroids.
Now we have obtained the following multi-server placement
scheme:

Algorithm 5. (k-Server Optimization Heuristic) First, par-
tition the clients into k classes via k-means heuristic. Then
solve the convex problem (13) to get the server locations.

As has been analyzed in Sec. III-C, the k-means problem is
a simplified version of our problem with the weights between
servers removed. Thus, it can be a good heuristic to partition
the clients into any k classes. In our k-Server Optimization
Heuristic, we utilize the similarity between k-means and our
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problem to help obtain a sub-optimal partition and further
reduce the errors of ignoring the weights between servers by
fine-tuning the locations of the servers under the found k-
means partition.

D. Ideal-to-Real Server Mapping and Algorithm Complexity

Note that all the proposed algorithms aim to find (ideal)
server locations in the delay space. As a common final step
of all the proposed algorithms, we map each computed ideal
server location to the nearest real physical server in terms of
delay, which is fast. We will see in Sec. V that our server
selection procedure can indeed reduce latency even if the real
server mapping phase can introduce errors.

Let us have a glimpse on the complexity of different
algorithms. In fact, the running time of an algorithm is mainly
dictated by the time to compute ideal server locations in the
delay space, which depends only on the number of clients N
and the number of servers to be adopted k, but not on the
total number of candidate servers M . In contrast, selecting k
servers on a graph of all M candidate servers and N clients [4]
has a complexity that dramatically increases with M , which
can be quite large in today’s large-scale server cloud. The
complexity of the proposed one-server algorithms in space
is linear in N . For Two-Server Centroids and One-Or-Two-
Server, the complexity is O(2N ). However, the speed is still
satisfactory when the number of clients N is limited to a few
closely related people (which is common in today’s multi-
party live conferencing and other interactive video streaming
applications). Even if N is large, the simple k-means partition
can achieve a satisfactory performance in polynomial time
with complexity O(kc), c being a constant.

V. TRACE-DRIVEN SIMULATIONS

We conduct simulation evaluation based on two network
latency datasets we have collected, one containing round-
trip times (RTTs) in the PlanetLab, the other containing
RTTs from the Seattle network [8] to PlanetLab nodes. The
PlanetLab dataset contains the RTTs between 490 PlanetLab
nodes (including 51 nodes in Asia, 222 nodes in Europe,
192 nodes in North America, and 25 nodes in other regions),
that we collected in 2014 over a 15-day period, with the
geographic distribution of the nodes shown in Fig.(2). We have
also collected RTT measurements from 99 nodes in Seattle,
an open peer-to-peer computing platform [8] that consists of
laptops, servers, and phones donated by users and institutions
for research purposes, to the 490 PlanetLab nodes. While
PlanetLab nodes are mostly stable and located in university
networks, the Seattle-PlanetLab RTTs are used to model the
longer delays from personal devices to servers in Sec. V-D.

We use the median latencies between nodes as the input
to our server placement algorithm. In real-world applications,
network coordinates of the severs may be computed and stored
a priori. When a client joins the session, its network coordinate
can be computed by a local decentralized Vivaldi algorithm
with pings to only a few random servers. In our experiments
based on PlanetLab data, we directly embed all the nodes into
a delay space using an local iterative Vivaldi algorithm. In each

 

 

Fig. 2. The locations of the 490 PlanetLab nodes.
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Fig. 3. The performance of different algorithms in the 490-node simulation.

test run, we randomly choose a certain number of nodes as
clients, while the remaining nodes act as the potential server
pool. This way, the clients in each of our experiments are
essentially randomly distributed over the entire world across
multiple regions. In experiments involving the Seattle data, we
take the 490 PlanetLab nodes as the potential server pool and
randomly select nodes from the 99 Seattle nodes as clients.

A. Algorithms with No More than Two Servers

In this subsection and the next one, we study the delay
performance based on the 490-node PlanetLab dataset, as
the number of clients N ranges from 4 to 12. In each run,
different algorithms are applied, and their corresponding server
locations and client partitions are computed in the delay space.
Then we map these solutions to the nearest real servers in
the dataset and build up the network. Finally, we evaluate the
delay performance of these networks according to the real
end-to-end delays of the clients in the RTT traces. For every
parameter setting, we repeat the simulation for 1000 times. For
each server selection solution produced by a certain algorithm,
we record the sum of end-to-end delays between all clients D
(in the real traces), and normalize it by DN , which is the sum
of pairwise distances of all the clients forming a full mesh. We
finally use the ratio D/DN to evaluate the server selection.

Fig. 3 shows the performance of our proposed algorithms on
the PlanetLab data. Fig. 3(a) shows the average (normalized)
sum of end-to-end delay in each session for the ideal server
locations computed in the delay space, whereas Fig 3(b) shows
such value after mapping the computed ideal server locations
to real servers. In both figures, the performance ratios are much
smaller than the theoretical worst-case bounds. And the ratios
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TABLE I
THE PERFORMANCE OF DIFFERENT ALGORITHMS IN THE 490-NODE
SIMULATION WITH 8 RANDOM CLIENTS REPEATED FOR 1000 TIMES.

Average Worst Best Variance

Theorectical

D1/Dn 1.388 1.617 1.187 0.003259
D1opt/Dn 1.324 1.529 1.125 0.004288
D2/Dn 1.356 1.487 1.162 0.002175
D12/Dn 1.317 1.450 1.125 0.003227

Real

D1/Dn 1.334 2.089 0.979 0.02355
D1opt/Dn 1.317 1.994 0.977 0.01539
D1opt/Dn 1.350 2.153 0.981 0.02621
D12/Dn 1.286 1.855 0.977 0.01375

monotonically increase when the number of clients increases.
The Two-Server algorithm performs worse in the real case
due to the mapping error. However, the proposed One-Or-Two-
Server algorithm is obviously better than One-Server-Optimal.
The reason is that we are choosing a better one from two
solutions, and despite network coordinate errors and mapping
errors, the algorithm can pick the one with a smaller error or
take advantage of random changes.

Specifically, Table I shows more details for the average,
best, worst-case and variance of the performance of 1000 tests
on 8 random clients. The best and worst-case performance
follows a similar trend as the average performance. The real
ratio has a larger variance due to other errors like network
coordinate errors and mapping errors. Note that the real best
performance can even be slightly better than 1 since the
triangle inequality in real networks does not hold strictly.

Fig. 4(a) plots the distribution of the mean and maximum
end-to-end delays achieved by One-Or-Two-Server, compared
to a fixed single server location (similar to what Skype adopts
[1]) for 8 clients randomly chosen from the 490-node dataset,
repeated 1000 times. We can see that the average end-to-end
delays of most sessions with our simple One-Or-Two-Server
algorithm are around 90 ms, and the maximum end-to-end
delay is mostly less than 200 ms, which is obviously better
than the single fixed server solution. Furthermore, Fig. 4(b)
plots the real server mapping error in the same experiment, that
is the gap between the real end-to-end delay and the estimated
end-to-end delay in the delay space (without mapping to real
servers). Most errors are less than 15 ms. Compared to the
average end-to-end delay of about 90 ms, the real delay is
close to the estimated delay in the delay space.

Through the above performance comparisons, we have
the following observations. First, One-Or-Two-Server, which
is a combination of One-Server Optimal and Two-Server-
Centroids, outperforms each of them. Two-Server Centroids
can successfully complement One-Server Optimal, reducing
delay in the case when One-Server Optimal performs poorly.
With the One-Or-Two-Server algorithm, we can effectively
reduce the delay over one-server algorithms, including a single
fixed server and one-server optimal algorithms, and achieve a
reasonably good solution when the number of clients does not
exceed 12. Second, although One-Server Optimal outperforms
One-Server Centroid, yet One-Server Centroid has the shortest
execution time, making it a valuable choice in applications that
just need one server for extremely quick launching.
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Fig. 4. (a) The distributions of the mean and maximum end-to-end delays
with One-or-Two-Server or a single fixed server; (b) The gap between the
computed mean end-to-end delay and that after mapping to real servers. Tests
are performed on 8 random clients for 1000 times.
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Fig. 5. Delay performance (normalized by DN ) of the k-Server Optimization
Heuristic in the 490-node simulation.

B. Performance of k-Server Heuristics

Fig. 5 shows the average performance of the k-Server
optimization heuristic. The performance generally increases
when more servers are engaged. There is a relatively large
improvement from the 2-server to 3-server solutions. When
using more than 3 servers, the improvement becomes marginal
and not stable. It seems that the 3-server solution is the
best and sufficient to handle the diversity in the geographic
distribution of 12 clients, thus leading to a large performance
increase over the 2-server solution, while adopting more than
3 servers appears to be unnecessary for 12 clients. We can also
see that as the number of clients increases, the performance
of more servers degrades at a slower pace than 1 or 2
servers. Another observation is that having more servers might
experience bad performance when the number of clients is
slightly larger than the number of servers. Therefore, the k-
Server Optimization Heuristic with 3 servers are generally the
most cost-effective solution.

We have also measured the execution times of our algo-
rithms, and present them in Table II for all the proposed
algorithms under different numbers of clients. According to the
discussions at the end of Sec. IV, we estimate the running time
for each algorithm by keeping track of the computation time as
well as the mapping time, and summing them up. The running
times of the two-server algorithms involving exhaustive par-
tition search increases dramatically as the number of clients
grows. However, they are still practical when there are no
more than 12 clients—all algorithms finish in only 1 second.
The running times of the other algorithms are consistently low
regardless of the number of clients.
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Fig. 7. The CDF of mean end-to-end delays for the cross-network simulation
and the 490-node simulation for 12 clients.

C. k-Means Partition vs. Max-β Partition

In our solutions with two servers, the performance critically
depends on the partition. As we have shown, the more separate
the two classes are, the better the two-server solution will
perform. We have proposed to exhaustively search for the
best partition to maximize the separability β, which leads to
excessive computational overhead when N is greater than a
few dozens (although a rare case nowadays).

We propose to reduce such complexity using the k-means
algorithm. By (9), separability is related to the sum of the
delays from the clients to the class centroid in each class, and
we know that the k-means algorithm is an efficient heuristic
for finding the solution minimizing that sum. Consequently,
we can conduct partition in Two-Server Centroid and One-Or-
Two-Server algorithm using the 2-means algorithm instead of
an exhaustive search.

For a typical N = 6, we have performed thousands of trials
with on the 490-node dataset, and record the normalized delay
performance D2/DN of Two-Server Centroid with 2-means
partition versus with the max-β partition, and plot the results
in Fig. 6. We observe that a large group of the points are
near the line y = x, which implies that the 2-means algorithm
is an excellent alternative to exhaustive partition search. Due
to network coordinate projection errors and server mapping
errors, sometimes 2-means has even better performance. This
efficient heuristic has nearly the same average performance
as max-β partition in general, and can easily scale to a large
number of clients.

TABLE II
THE ALGORITHM RUNNING TIMES (MS)

Number of Clients 4 6 8 10 12
One-Server Centroid 3.71 3.66 3.40 3.50 3.46
One-Server Optimal 5.85 6.67 6.99 8.30 8.81
Two-Server Centroid 8.22 10.78 22.37 87.76 393.35
One-Or-Two-Server 14.06 11.45 29.36 96.06 402.16

k-Server Heuristic (k=2) 69.62 66.64 62.05 66.84 66.67

D. Simulations across Seattle and PlanetLab Networks

To simulate the possibly different latencies between inter-
server connections and client-to-server connections, we make
the 490 PlanetLab nodes the server pool and in each run,
randomly choose 12 nodes from the 99 Seattle nodes to serve
as the clients and deploy the k-Server heuristics to select
server(s). Note that the Seattle nodes have relatively worse
network conditions than the PlanetLab nodes since the Seattle
nodes come from a more diverse environment. Fig. 7(a) shows
the average end-to-end delay between all client pairs achieved
in 1000 runs and Fig. 7(b) shows the corresponding result
in the PlantLab-only simulations (both servers and clients are
from the 490 PlanetLab nodes). We can see that the multi-
server solution has a larger benefit over a single server in the
cross-network simulation especially for the 2-server heuristic,
since the better network conditions among servers reduces the
delay between servers, which reduces the cost of engaging one
more transmission hop with respect to the one-server solutions.
The better the network conditions between servers, the more
the multi-server solutions will help.

VI. PROTOTYPE IMPLEMENTATION

To verify the real-world performance of the proposed
methods, we have developed an asynchronous multi-threaded
packet communication module, with the Apache Thrift frame-
work and the Boost library, in 2, 000 lines of C++ code. And
Thrift generated about 5, 000 lines of code. We deployed this
prototype interactive streaming system on PlanetLab nodes. In
our experiments, each client sends packets to its designated
server at a frequency of 300 packets/second using TCP,
where the source rate is controlled by tuning the packet size:
sourcerate = packetsize× frequency. We aim to measure the
real packet-level end-to-end delays achieved at different source
rates considering both the network distance effect and system
load.

Since it is hard to synchronize the clocks on different
computers, the delay between clients (on the order of ms)
cannot be measured by simply recording the sending time on
the sender and the receiving time on the receiver. We propose
an indirect method to measure the end-to-end delay of each
packet. Suppose client A is sending packets to another client
B via some servers. At the very moment before A sends out
a packet, it starts a timer. When the packet eventually reaches
B, B will send a ping packet directly to the sender A. When
A receives the ping packet, it stops its timer and record the
time span Tcircle, which is the end-to-end delay of the packet
from A to B plus the one-way ping time from B to A. When
B gets the reply of the ping from A, it records the round trip
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Fig. 8. The mean end-to-end delay in implementation at various source rates
for 6 clients.

time RTTAB . Therefore, the end-to-end delay from A to B
can be evaluated by Tcircle−RTTAB/2. In our implementation,
each client measures the end-to-end delay to all other clients
once every 300 packets.

The goal of the prototype-based experiments is to verify
if the delays calculated by summing up the ping values really
conform to the packet-level delays in a real system where CPU
and other resource usage may also affect end-to-end delays.
Therefore, we have selected a group of 6 clients, for which the
multi-server heuristic can indeed improve delay performance
in the simulation and we want to see whether such benefits
still exist in the implementation.

Fig. 8(a) shows the performance comparison between simu-
lation and implementation. To eliminate the influence of source
rates on latency , here we deliberately set the source rate to
be 1 kbps. Note that as the number of servers increases from
1 to 4, the real delay (ms) in the implementation decreases
at a similar pace to that in the simulation (which estimates
delays by summing up RTTs). The real delay is only slightly
worse than the simulated result due to the existence of queuing
delays and processing (CPU) delays.

Fig. 8(b) illustrates the change of the mean end-to-end
delays as the source rates of clients increase. When the number
of servers is 2, 3 and 4, the mean end-to-end delays only
increases slightly as the source sending rate increases from
1 kbps all the way to 500 kbps at each source (which can
support sufficiently high video quality). However, in the one-
server solution, as the source rate increases, the mean end-to-
end delays has a dramatic increase, which surges from 29.5
ms to 38.3 ms as the source rate changes from 1 kbps to 500
kbps. The reason is that the server uploading burden increases
with fewer servers, since now each server needs to upload data
to more terminals.

VII. CONCLUDING REMARKS

In this paper, we study server selection and server location
optimization with a k-server mesh topology in distributed
interactive video streaming applications, aiming at minimiz-
ing the summation (or mean) of end-to-end delays between
clients. We formulate the problem in a delay space instead
of on a graph, and propose a number of conceptually simple
one-server or two-server approximate solutions with theoret-
ical worst-case performance guarantees. We further propose
practical optimization heuristics to enable rapid selection of
three or more servers. We have performed extensive trace-
driven simulations based on large amounts of measurement

data collected from the PlanetLab and Seattle platforms and
implemented a prototype system to verify our proposed server
selection schemes in real networks. Despite the errors in
network embedding and real server mapping, our proposed
algorithms can efficiently select servers for interactive video
streaming, achieving low end-to-end delays.

In conclusion, by using a simple One-or-Two-Server
scheme, both the mean and maximum end-to-end delays in
interactive video streaming sessions can be greatly reduced, as
compared to always using servers at a single location. With the
proposed k-server selection heuristic, mean end-to-end delays
can be further reduced as more servers are used. However, for
the cost-effectiveness in sessions composed of no more than 12
clients, a practical size of today’s interactive video streaming
sessions, using more than 3 servers is mostly unnecessary.
Moreover, with any of the proposed algorithms, it takes less
than 1 second on a commodity personal computer to optimally
select the locations of multiple servers for 12-client sessions,
given a pool of close to 500 candidate servers.
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APPENDIX

Proof of Proposition 2: We first present several lemmas.

Lemma 6. Given any N clients x1, . . . , xN , we have
D2

DN
< 2− 4(β − 1)

m
n + n

m + 4β
. (14)

Similar to (6) in the proof of Proposition 1, using triangle
inequalities, we can get∑

xi∈C1

‖xi − y1‖ ≤
2

m
· 1
2

∑
xi,xj∈C1

‖xi − xj‖ =
2

m
·A

∑
xi∈C2

‖xi − y1‖ ≤
2

n
· 1
2

∑
xi,xj∈C2

‖xi − xj‖ =
2

n
·B,

where each equality is achieved when the clients in that class
are distributed on two points. Using triangle inequalities with
some careful edge counting, we can get

mn‖y1 − y2‖ = mn

∥∥∥∥∑
xi∈C1

xi

m −
∑

xj∈C2
xj

n

∥∥∥∥
=

∥∥∥∥∑xi∈C1,xj∈C2
(xi − xj)

∥∥∥∥ ≤∑xi∈C1,xj∈C2
‖xi − xj‖ = C,

where the equality is achieved when all the clients are
distributed on a line and there exists a point on the line which
separates the clients from the two classes. Therefore,

D2

DN
≤

(N − 1)
(

2
mA+ 2

nB
)
+ C

A+B + C
.

= 2−
C −

(
2n
mA+ 2m

n B
)
+
(

2
mA+ 2

nB
)

A+B + C

< 2−
C −

(
2n
mA+ 2m

n B
)

A+B + C
,

Eliminating C by(7), we have

D2

DN
< 2−

2(β − 1)
(
n
mA+ m

n B
)

A+B + 2β
(
n
mA+ m

n B
) . (15)

Since
n

m
A+

m

n
B ≥ 2

√
AB, (16)

where the equality is achieved when

A/B = m2/n2. (17)

Once this equality holds, we get (14).

Lemma 7. Given m,n with m + n = N , there exists a
partition {C1, C2}, such that |C1| = m, |C2| = n, and
β(C1, C2) ≥ 1/(2− 1

m −
1
n ).

We exhaust all partitions {C1, C2} with |C1| = m and
|C2| = n and inspect the ratio

βsum =

∑
P :|C1|=m,|C2|=n C/(2mn)∑

P :|C1|=m,|C2|=n
(
A/m2 +B/n2

) .
Due to the exhausting procedure, both the numerator and the
denominator of βsum evenly cover all the pairwise delays of
the clients. Therefore, we can evaluate their ratio by counting
how many pairs of delays they cover. Since there are totally(
m+n
m

)
different kinds of partitions, after cancelling the same

factor, we have

βsum =
1

2mn ·
(
m+n
m

)
·mn(

m+n
m

)
· ( 1
m2 ·

(
m
2

)
+ 1

n2 ·
(
n
2

)
)
=

1

2− 1
m −

1
n

.

Hence, among all the different β(C1, C2) with |C1| = m and
|C2| = n, there must exist one such that β(C1, C2) ≥ 1/(2−
1
m −

1
n ).

According to Lemma 7, for the partition that maximizes β,
we have β ≥ 0.5. Therefore, by (14), we have

D2

DN
< 1 +

m
n + n

m + 4
m
n + n

m + 4β
≤ 1 +

m
n + n

m + 4
m
n + n

m + 2
≤ 2.5.

Proof of Proposition 4: When proving Propositions 1 and
2, we have fixed DN and found upper bounds on D1 and
D2. In the following, we take a different approach to fix D2

and find the maximum value D1max of D1, that is the delay
produced by One-Server Centroid. Since D1opt ≤ D1, D1max

is also an upper bound on D1opt. The next lemma gives D1max

for fixed D,E, F :

Lemma 8. Given D, E, and F , and the numbers of clients
in the two classes m, n, with m ≤ n ≤ 3, we have

D1max = (m+ n− 1)

(√
D2 +

(
2n

m+ n
F

)2

+

√
E2 +

(
2m

m+ n
F

)2

+

(
2mn

m+ n
− 2

)
F

)
.

Proof Sketch: When F is given, the delays between the
centroids of the two classes and the centroid of all the clients
are fixed, i.e., ‖y1 − y‖ and ‖y2 − y‖ are both fixed, since

N

n
‖y1 − y‖ =

N

m
‖y2 − y‖ = F. (18)

Therefore we only need to consider how the clients in each
class are distributed to maximize the sum of their delays to
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the main centroid. That is equivalent to solving

maxxi∈Ck

∑
xi

‖xi − y‖ (19)

s.t.
∑
xi∈Ck

xi = 0 and
∑
xi∈Ck

‖xi‖ = T,

where T is some constant. We consider when Ck has 1,2 or
3 clients. When Ck has only 1 client, (19) is constant and
trivially maximized. When Ck has 2 clients, the two clients
x1 and x2 are symmetric to each other and it is easy to find
that (19) achieves its maximum when x1−x2 is orthogonal to
y. When Ck has 3 clients, assuming x3 has the shortest norm
so that ‖x3‖ ≤ T/3, we rewrite (19) as

maxx3 f(x3) = ‖x3 − y‖+ max
x1,x2

2∑
i=1

‖xi − y‖ (20)

s.t. x1 + x2 = −x3 (21)
‖x1‖+ ‖x2‖ = T − ‖x3‖. (22)

Now we calculate maxx1,x2

∑2
i=1 ‖xi − y‖. We have

‖x1−y‖+‖x2−y‖ ≤ 2

√
1

2

(
‖x1 − y‖2 + ‖x2 − y‖2

)
, (23)

where the equality is achieved when ‖x1 − y‖ = ‖x2 − y‖.
We also have

x1 − y =

(
x1 −

x1 + x2
2

)
+

(
x1 + x2

2
− y
)
, (24)

which also holds for x2. Hence, by (21) and (24), after some
derivation, (23) can be rewritten as

‖x1 − y‖+ ‖x2 − y‖

≤

√
2

(∥∥∥∥x1 + x3
2

∥∥∥∥2 + ∥∥∥∥x2 + x3
2

∥∥∥∥2 + 2

∥∥∥∥x32 + y

∥∥∥∥2).
If we fix x3, −x3/2 is the geometric median of x1 and x2,
and thus∥∥∥∥x1 + x3

2

∥∥∥∥+ ∥∥∥∥x2 + x3
2

∥∥∥∥ ≤ 2∑
i=1

‖xi‖ = T − ‖x3‖, (25)

where the equality is achieved when x3 = 0. Also, since

x1 +
x3
2

+ x2 +
x3
2

= 0,

‖x1 + x3/2‖2 + ‖x2 + x3/2‖2 achieves the maximum when
‖x1 + x3/2‖ = ‖x2 + x3/2‖.

Therefore, by (23) to (25), we can get maxx1,x2(‖x1−y‖+
‖x2 − y‖), so (20) can be calculated as

f(x3) ≤ 2

√∥∥∥∥y − x3
2

∥∥∥∥2 + (T − ‖x3‖2

)2

+ ‖x3 − y‖, (26)

the rhs of which reaches its maximum value
2
√
‖y‖2 + T 2/4 + ‖y‖ when x3 = 0, which can be

shown by analyzing the derivatives of rhs of (26) for all x3.
When x3 = 0, all the above inequalities can achieve equality.
Therefore, when Ck has three clients, we can calculate D1max.
Finally, using the same analysis as above, we can calculate
D1max for all m and n no more than 3. They all have the

same form as (18), completing the proof.
Now we can vary D,E, F to find the maximum values of

D1max/D2 under different cases. Since D1opt ≤ D1 ≤ D1max,
we only need to find the maximum of D1max/D2. Since D2 =
(m+ n− 1)(D + E) +mnF , by Lemma 8, we can express
D1max/D2 as a function of D,E and F . By dividing both the
numerator and denominator by F , and denoting D/F as λ,
E/F as µ, we get

D1max

D2
=

m+ n− 1

(m+ n− 1)(λ+ µ) +mn
·

(√
λ2 +

(
2n

m+ n

)2

+

√
µ2 +

(
2m

m+ n

)2

+
2mn

m+ n
− 2

)
. (27)

From (9), we have λ
m + µ

n = 1
β′ . We maximize D1max/D2

as a function of λ and µ subject to λ
m + µ

n = 1
β′ , and can

find that for both 1 = m < n ≤ 3 and 1 < m ≤ n ≤ 3,
D1max/D2 given by (27) achieves its maximum value when
µ = 0. Substituting µ = 0 into (27) for different m,n proves
Proposition 4.
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