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ABSTRACT

Personalized recommender systems are playing an increasingly
important role for online consumption platforms. Because of the
multitude of relationships existing in recommender systems, Graph
Neural Networks (GNNs) based approaches have been proposed to
better characterize the various relationships between a user and
items while modeling a user’s preferences. Previous graph-based
recommendation approaches process the observed user-item in-
teraction graph as a ground-truth depiction of the relationships
between users and items. However, especially in the implicit rec-
ommendation setting, all the unobserved user-item interactions are
usually assumed to be negative samples. There are missing links
that represent a user’s future actions. In addition, there may be
spurious or misleading positive interactions. To alleviate the above
issue, in this work, we take a first step to introduce a principled way
to model the uncertainty in the user-item interaction graph using
the Bayesian Graph Convolutional Neural Network framework. We
discuss how inference can be performed under our framework and
provide a concrete formulation using the Bayesian Probabilistic
Ranking training loss. We demonstrate the effectiveness of our pro-
posed framework on four benchmark recommendation datasets.
The proposed method outperforms state-of-the-art graph-based
recommendation models. Furthermore, we conducted an offline
evaluation on one industrial large-scale dataset. It shows that our
proposed method outperforms the baselines, with the potential
gain being more significant for cold-start users. This illustrates the
potential practical benefit in real-world recommender systems.
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1 INTRODUCTION

Online consumption (e.g., online shopping, watching videos, read-
ing news, etc) has become more and more popular with the rapid
development of the Internet and mobile devices. In such online
applications, it is difficult to meet users’ diverse and personalized
needs. Under these circumstances, recommender systems, which
guide users to find the items of interest in a gigantic and rapidly
expanding pool of candidates, have emerged. Recommender sys-
tems tend to recommend the same item to users of similar interests,
which is known as collaborative filtering (CF). As one of the most
successful implementations of model-based CF methods, matrix fac-
torization (MF) [18] models achieved the best performance in Netflix
contest. MF models (such as pLAS [15], MF [18] and SVD++ [17])
learn user and item embeddings by reconstructing the historical
user-item interactions. The learned user and item embeddings are
expected to characterize user preferences and item features. More
recently, deep learning models ([10, 13]), which can learn more com-
plex non-linear relationships between users and items, have been
developed to enhance the performance of traditional MF models.
Despite the progress, most existing MF based methods struggle
to address three major challenges: the sparsity issue, the uncer-
tainty issue and the diversity issue. First, existing methods rely on
the historical user-item interactions, so when the interactions are
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sparse, it is hard to learn high-quality representations, resulting in
performance deterioration. Second, existing methods recognize the
provided data as ground truth without uncertainty, but in many
practical settings, the user-item interactions are collected from
noisy environments. On one hand, some spurious user-item posi-
tive interactions are present due to noisy information; on the other
hand, some potential user-item positive interactions are missing
because the item is never presented to the user. This is falsely indi-
cated as a negative interaction. Third, most existing methods for
top-N recommendation focus on the relevance of each individual
item independently and overlook the diversity of the top-N rec-
ommended items (i.e., the mutual influence between items). As
observed in [22], ignoring diversity of the recommended list leads
to sub-optimal performance.

Recently, graphs have been used to represent the relational in-
formation present in recommendation datasets. The user-item in-
teraction can be naturally viewed as a bipartite graph. Further-
more, the similarities between users and the commonalities of items
can be explicitly modelled as user-user and item-item graphs, re-
spectively. These graphs allow algorithms to exploit the relation-
ships between the entities. Graph Convolutional (Neural) Networks
(GCNs) [5, 11, 16] have proven to be among the best performing
architectures for a variety of graph learning tasks. The key idea
in GCNss is to learn how to iteratively aggregate feature informa-
tion from local graph neighborhoods using neural networks. This
aggregation step allows each node to learn a more general node rep-
resentation from its local neighborhood. Incorporating the graph
representation in recommendation systems has shown to be effec-
tive for alleviating the data sparsity and cold start problems and
improves the recommendation relevance [19, 34, 38]. The proposed
systems exploit user-item interaction graphs [31, 34, 38], user-user
and (or) item-item co-occurrence graphs [19] and heterogeneous
graphs [3, 6] coming from heterogeneous interaction types (search,
guide, click, etc.) or interaction motives.

Although there has been progress, existing graph-based rec-
ommendation models totally neglect the uncertainty issue in the
bipartite user-item interaction graph. The edges provided in the
observed bipartite graph are only based on historical interactions
from the perspective of the data collector. They do not represent a
complete picture of a user’s interactions (for example, many other
items may have been purchased from a different store and are there-
fore not present in the record). In addition, there may be spurious
or misleading positive interactions, where a user has inadvertently
clicked or purchased something on a temporary whim. On the
other front, existing graph-based models also fail to address the
lack of recommendation diversity. The neighborhood aggregation
step in the graph-based recommendation approach generally leads
to a learned user embedding that is considerably closer to the em-
beddings of items that he/she has interacted with previously. As
a result, there is the potential that graph-based approaches can
further dampen diversity by recommending very similar items to
those involved in historical interactions. Expanding the aggrega-
tion neighbourhood can alleviate this to some extent, but this has
the adverse effect of incorporating more spurious edges and noisy
relationships, leading to performance degradation.

To address the limitations of the current GNN based recommen-
dation approaches, we propose a new training framework based on
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Figure 1: Motivation figure for node copying in the context
of recommender system setting,.

Bayesian Graph Neural Networks (BGNNs). The proposed BGNN
incorporates a random graph generative model based on node-
copying [24]. The node-copying model can be used to produce
sample graphs that are similar to the observed graph, but they con-
tain sufficient diversity in terms of edges to promote better learning.
Importantly, the model is very efficient and scalable, allowing it to
be applied to very large graphs. The BGNN allows us to address
the uncertainty in the observed user-item interaction records and
at the same time bring diversity into the recommendation results.
Bayesian GNNs have not previously been used for the task of recom-
mendation, but it has been shown that they can produce significant
performance improvements in semi-supervised node classification
when there are very few training labels [23, 24, 30, 39].

In this paper, we propose a novel Bayesian graph convolutional
neural based recommender system framework, BGCF (Bayesian
Graph Collaborative Filtering). There are two major contributions:

1) We introduce a principled way to address the uncertainty
in the user-item bipartite graph in the recommendation training
using Bayesian Graph Convolutional Neural Networks. We discuss
how inference can be performed under our framework and provide
a concrete formulation using the Bayesian Probabilistic Ranking
training loss [26].

2) By performing thorough experiments on three commonly used
recommendation datasets and one industrial large-scale dataset, we
demonstrate that our proposed solution can achieve accurate and
diverse recommendation results, and at the same time alleviate the
data sparsity problem for users who do not have rich interaction
history. The proposed method outperforms state-of-the-art graph-
based recommender systems.

2 RELATED WORK

2.1 Model-based Collaborative Filtering Models

Collaborative filtering (CF) has been well studied for personalized
recommender systems during the last decade. The basic assump-
tion of CF is that users with similar preferences tend to like the
same items, and items with similar audiences tend to have the same
features. Model-based CF methods learn the similarities between
items and users by fitting a model to the user-item interaction data.
Latent factor models are common, such as probabilistic Latent Se-
mantic Analysis (pLAS [15]), Matrix Factorization (MF [18]) and
SVD++ [17]. They learn user and item embeddings by reconstruct-
ing the historical user-item interactions. The learned user and item
embeddings are expected to characterize user preferences and item
features. Predicting an unknown rating of a user-item pair relies
on the learned user and item embeddings (the predicted score is
the inner product of the corresponding user and item embeddings).



Despite their success, model-based CF methods suffer from two
limitations: (1) they are confined to the inner-product mechanism
to measure the similarity between users and items and (2) as a result
of merely relying on user-item interactions they suffer from data
sparsity. Many approaches have been proposed to address these
two problems. Recently, neural networks have been incorporated
into collaborative filtering architectures [8, 13]. These use a combi-
nation of fully-connected layers, convolution, inner-products and
sub-nets to capture complex similarity relationships. An effective
and common approach to alleviate the data sparsity problem is to
leverage side information. For example, factorization machines [25]
can provide a mechanism for incorporating side information such
as user demographics and item attributes. Another line of research
to tackle the sparsity problem is to exploit structure proximity in
the user-item bipartite graph (or other graph information), which
will be elaborated upon in the next section.

2.2 Graph Based Recommendation

There has been a considerable research effort devoted to the use
of graph models in recommendation systems. Early works [9, 37]
use traditional random walks and label propagation to model the
similarity scores for user-item pairs. With the success of graph
(convolutional) neural networks [5, 11, 16] on a wide range of ap-
plications, recent works have switched focus to applying GNNs in
recommendation systems [31, 34, 38]. Graph Convolutional Matrix
Completion (GCMC) [31] models the recommendation task as a ma-
trix completion problem and uses a graph convolution autoencoder
to learn user and item embeddings. Pinterest have proposed Pin-
Sage [38], a large-scale GNN-based recommendation model to learn
the embeddings from the pin-board bipartite graph. This has been
reported to achieve significant performance gains for the Pinter-
est recommendation system. Neural Graph Collaborative Filtering
(NGCF) [34] designs a novel information propagation layer which
enables explicit interactions between a user and its neighbor items
to learn embeddings for users and items on the user-item interac-
tion bipartite graph. GNNs have also been employed for the specific
task of social recommendation in [7, 28, 35, 36] to better leverage
the user’s social relationships. It is worth mentioning another line
of work which addresses the complex and heterogeneous inter-
action types between users and items in large-scale e-commerce
networks [3, 6]. This problem setting is not in the scope of this
paper since we address only the setting where there is a single
type of interaction between user and item. However, with an ex-
tended graph generative model, our proposed approach has the
potential to generalize to the case of multiple interaction types (the
heterogeneous graph setting).

2.3 Bayesian Graph Neural Networks

Almost all GNNs approaches process a graph as a ground-truth de-
piction of the relationship between nodes, but often the graphs em-
ployed in applications are derived from noisy data. Addressing the
uncertainty on the underlying graph was first considered in [39] for
the problem of node classification. In this work, the authors target
the inference of a generative graph model (using an MMSBM [20]
as the random graph model) to address the uncertainty in the un-
derlying observed graph and formulate the structure uncertainty

exploration using a Bayesian framework. However, the approach
is not flexible and does not utilize the node attributes or labels.
These limitations were addressed in the follow-up works [23, 24],
where [23] uses a non-parametric model for the graph generative
model and [24] proposes a node copying model to achieve flexibility
in the generative model and improve computational efficiency.

In the context of recommendation, [4, 14, 21] directly apply a
Bayesian framework to model the users’ preferences. Our approach
is very different in that we use the Bayesian framework to model
the uncertainty in the interaction graph within our graph neural
network model. In the following sections, we address in depth how
we can incorporate the Bayesian graph neural network framework
into the recommendation system to better model the uncertainty
in the user-item interaction graph.

3 PRELIMINARIES

We base our model on a Bayesian formulation that incorporates
graph uncertainty, the generative graph model of node copying, and
the Bayesian Personalized Ranking loss. We briefly review these
three components in the preliminary section.

3.1 Bayesian Graph Convolutional Networks

In [39], to alleviate the effect of the potential noise in the observed
graph, the authors view the graph as a random variable and con-
sider a Bayesian approach. The framework they present can be
generalized to target any prediction task and value of interest. To
extend the model, we need to specify a probability function for the
value of interest that depends on a graph G, the parameters for the
graph generation model or a vector of other intermediate random
parameters A, and any available node attributes D : p(:|D, G, A).
The posterior of interest p(-|D, G,ps) is obtained by marginalizing
over the random variables G and A:

(1D, Gope) = / (1D, G. M)p(AID. G. Gops)
D(GID. Gops) dGdA. (1)

Zhang et al. presented this model in [39] for the node classifica-
tion task. In their case, the value of interest is the node labels. They
used a stochastic block model for p(G|G,ps), which is an appro-
priate choice for node classification. However the above Bayesian
Graph Convolutional Network (BGCN) formulation has two limita-
tions. First, it ignores the possible dependence of the graph G on D.
Second, it requires an appropriate parametric random graph model
(such as a Mixed-Membership Stochastic Block Model (MMSBM)
model [20]). Whether a model is appropriate depends very much
on the encountered graph structure, which can vary greatly for
different problem settings.

Since there is no inherent block structure in a recommender sys-
tem bipartite graph, the MMSBM is not an applicable graph model.
As an alternative, we use a more general generative model for
graphs based on copying nodes, as introduced in [24]. We demon-
strate in the following sections that this model can be adapted
naturally to the recommender system setting.



3.2 Node Copying

In [24], Pal et al. introduce the node copying model for p(G). Sam-
ples from this model are generated by probabilistically rearranging
(with replacement) the adjacency matrix rows of the observed graph
A°bS The i*h-row in the adjacency matrix A;”zbs encodes the neigh-

borhood of node i, so if we have a sampled graph with A;. = A;?’I:’ S,
the neighborhood of node j was copied to node i.

The copying operation for the whole graph can be expressed us-
ing an auxiliary random vector ¢ = [¢1,¢?,..¢N]T € {1,2,..N}V,
where each entry {; denotes the row A%%S that will be placed in A; .
of the sampled G. The distribution of pli ¢) should be proportional
to some node similarity that can be derived from the observed graph
and data (G,ps, D). A suitable node similarity is task dependent
and should be specified accordingly.

The complete graph sampling process involves two phases. First
we sample . The entries are assumed to be mutually independent
so it can be factorized as follows:

N
P(&1Gobs: D) = [ | p(L'1Gobs> D) - @)

i=1

Once a realization of  is obtained, a second layer of randomness is
added by performing the copying for each node with some proba-
bility 0 < € < 1. The event of copying node j to node g is denoted
by the indicator function 1 (Gy=Gobs,j 1> S© the generative model can
be written as:

N
Ligi=6 , .; -
P(GlGobss §) = [ [ € 1 Fobstt! (1 - ) G Fors) - (3)

i=1

3.3 Bayesian Personalized Ranking loss for
Implicit Recommendation

In [26], Rendle et al. introduce a ranking loss for recommendation
systems based on a Bayesian model. We build on that model in this
work, extending it to take into account the multiple graphs of the
node-copying BGNN, so we now provide a brief review.

Let us denote the set of items that are neighbours in the observed
graph for user u as I := {i € I : (u,i) € Gops}, where [ is the set
of all items. The training set can then be written as:

Ds:={(wijlie; AjeI\L}. @

In other words, the training set is all triples (v, i, j) such that user
u interacted with i but did not interact with j. The test set, denoted
Dg, consists of all triples (u, i, j) such that neither edge (u, i) nor
(u, j) appears in G,ps. The goal of the recommender system is to
generate a total ranking >, of all items for each user u. The binary
relation >, is required to be a total order on the set of items I. The
relation i >, j specifies that user u prefers item i to item j.

In the Bayesian personalized ranking framework of [26], our
task is to maximize:

P (®l{>u}ps) < p ({>u}ps1©) p(©) . ®)

Here © are the parameters of the model, and {>,}p are the ob-
served preferences in the training data. We aim to identify the
parameters © that maximize this posterior over all users and all

pairs of items. We assume that users act independently, so:

[T ra>uile) (6)

(w,i,j)€Ds

p ({(>u}p,1®) =

We define the probability that a user prefers item i over j as
p (i >y jl©) = 0 (%ui(©)) . ™)

Here %y;; is a function of the model parameters © and the observed
graph for each triple (u, i, j). In our case, we use the difference
between the dot products of the user and item embeddings, so
%417 (0) = hu(6) - hy(©) — hu (6) - ().

If we adopt a normal distribution as the prior for p(©) then we
can formulate the optimization objective as:

BPR-OPT :=Inp (O|{>y}ps)
= ) Ino(kuy) - el ®)

(w,i,j)€Ds

We can optimize this via stochastic gradient descent by repeatedly
drawing triples (u, i, j) randomly from the training set and updating
the model parameters ©.

4 METHODOLOGY

4.1 Bayesian Graph Neural Networks for
Personalized Ranking

In this section we build on the Bayesian Personalized Ranking
framework of [26] to develop an approach that incorporates the
strengths of Bayesian GNNs and thus takes into account the uncer-
tainty in the graph observations. We develop two strategies; our
experimental approach is based on the second.

4.1.1 Marginalizing over sampled graphs. In this approach, we fo-
cus on the predictive posterior:

p ((upsl>ulns) =

/g P(G1Gobs) [ /@ P ((>u}5510.6) p(OI{>u}ns G dO| 4G
©)

Note that G, encodes the same information as {>,}p,. A triple
(4,1, j) € Dg indicates an edge (u, i) in G,ps (the bipartite user-
item interaction graph) and the absence of the edge (u, j). We
choose to write p(G|G,ps) instead of p(G|{>u}pg) to emphase the
relationship between the sampled G and G,;. In this expression,
we highlight that the probabilities are dependent on G because the
sampled graph structure directly affects the models used to form
the embeddings.

When attempting to maximize this predictive posterior, we can
choose to approximate the inner integral with respect to © by

p ({>“}D75|é§’ Q) where @g are the model parameters that max-
imize p(®|{>y,}ps, G). This latter maximization is the same as
BPR-OPT in (13), as outlined in Section 3.3, but the inclusion of G
indicates that %,i;(©, G, Gops) now takes into account the embed-
dings derived using G (and G,ps), as expressed in (19).



Adopting a Monte-Carlo approximation to the integral, and draw-
ing Ng graphs using the copying model from p(G|Gops), we have:

N
Pulpsl>ulng) = 5= D p(Culp @6, (1)
=1

where @1 = argmax p(O|{>y}ps, G1). The maximization to iden-
tify 61 is performed using stochastic gradient descent for each graph
Gj. The procedure thus involves sampling graphs and performing
training of the weights for each graph.

4.1.2  Redefining the probability mapping to address uncertainty.
The procedure described above involves increased computation,
because we must train multiple models, one for each sampled graph.
There are also more parameters in the collective models, so there
is a potential for overfitting. We can alleviate these concerns by
assuming a common model for all of the graphs. In this case, we
return to the original BPR framework, but change our choice of
Xuij (0, Gops)- Let hy, g denote the embedding in (19) for user u un-
der sampled graph G, and let h; g be the corresponding embedding
for item i. Then we define:

%uij (0, Gops) = /g [hug - hig —hug - hjg| P(GlGobs) dG

N
1 G

~ N_G £ [hu:gl “hig —hug, - hj,gl] > (11)

where the G; are drawn from p(G|G,ps). With this formulation,
we can identify the model parameters using stochastic gradient
descent as for BPR-OPT, but instead of drawing just a triple (u, i, j),
we first draw a graph G and then a triple (u, i, j) € Ds. The final
estimates of rankings are derived from

P (i >4 J18, Gobs) = 0 (21 (8, Gons) ) (12)

where © is the solution to the maximization of:

BPR-OPTg,,. = Y. Ino (%uij(0, Gops)) — AellO* (13)
(wij) €Ds

Equation (11), in conjunction with (7), illustrates that our final

prediction of a ranking involves averaging the scores Xy; j (6, Gobss G)
over all sampled graphs and then applying the sigmoid function.

4.2 Neighborhood Copying Graph Generative
Model

In order to sample graphs G with the node copying graph generative
model, we first need to form a suitable copying distribution

An intuitive way to measure similarity between users is to look
at preferences over items they share in the historical interaction
record. The Jaccard index is a statistic used for gauging the similarity
between finite sample sets. It is defined as the size of the intersection
divided by the size of the union of the sample sets. We specify the
similarity between every pair of users u;,u; € U as the Jaccard
index for the interaction records of the two users:
N(ui) N N(u j)
N(uj) U N(uJ) '

Here N (-) denotes the neighborhood of a node in the observed user-
item interaction graph G,s. To define p({), we simply normalize

sim(u;, uj) =

(14)

the metric over the pairs of users and set it to 0 otherwise. As the
distribution is not dependent on any additional information D, it
is only conditioned on G,ps:
j - _ 1 5™ sim(j,i) ifjmeU
P(§ = m|gobs) = i=1 J> (15)
0

otherwise

Having specified this distribution, we can then adopt the graph
sampling strategy from the copying model p(G|{) according to
equation (3). By sampling multiple graphs from our graph genera-
tive model, the observed graph, which is usually very sparse, can
be directly augmented with likely neighbors discovered from the
neighborhood of nodes with high similarities. In practice, we set the
probability of copying nodes € to be high to gain more additional
edges.

4.3 Joint Training on Observed Graph and
Sampled Graphs

From our proposed neighborhood copying graph generative model,
we obtain [ graph samples G, ..., G; ~ p(G|Gops, ¢). The next step
is how to learn useful information from these sampled graphs. In
this section, we first present our representation learning model,
specifying how we learn user and item embeddings from both the
observed graph and each individual graph sample.

4.3.1 Learning on Sampled Graphs G with Attention. Unlike the
observed graph G,;s whose edges are all true labels, the graph
samples introduce some spurious edges while attempting to find
potential links. The graph attention network (GAT) [33] applies a
self attention strategy operating on groups of spatially close neigh-
bors to implicitly specify different weights for different nodes in a
neighborhood. This follows the intuition that higher importance
should be given to the neighbors that are more similar with the
central node. GAT applied a single-layer feedforward neural net-
work with multiple weights on sets of node feature vectors and on
the transformation function to map from R2¢ — R as the attention
score.

To avoid the high complexity of GAT, we apply a simplified
attention mechanism by simply taking the dot product between
each neighbor with the central node as the attention coefficient.
This reduces the influence of noisy edges in the neighborhood and
emphasizes the discovered nodes with potentially positive effects.
More specifically, the attention coefficient is calculated as follows:

_ exp(e;j - ex)
2ieN(j) explej - i)

Ak (16)
a i represents the importance weight of each node k € Ng(j) on
the target node j, where Ng(j) denotes the neighborhood of node
Jj in the sampled graph G. e are input node embeddings.

Once obtained, the attention coefficients are used to compute
a linear combination over sets of neighbor nodes, together with
a mean aggregator, to serve as the learned representation from a

sampled graph G:
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Figure 2: Overall architecture for our proposed BGCF training process.

where n;j denotes the number of neighbors of node j in a sampled
graph G. Wé and Wé are shared weight matrices. || denotes the
concatenation operation.

4.3.2  Learning on Observed Graph G,p. For a target node j, we
learn its representation vector il]g °bs on the observed graph by
applying a mean aggregator over its neighbors. We select the mean
aggregator because edges in the observed graph are all ground-truth
and the mean aggregator is the simplest permutation-invariant

operator. The process is as follows:

1
o 2 )
T keNg,,. ()

Ngo R
hor = o(Wg,, (18)

where n; denotes the number of neighbors of node j in the observed
graph G,ps, and W,  is a shared weight matrix.

4.3.3 Joint Embedding Vector as Node Representation. By learning
on the observed graph G, and the sampled graphs G, for a target
node j, we obtain two representation vectors ilg and ilg obs These
represent the potential preferences and observed preferences, re-
spectively, of a user or an item. The final representation of a node

is hence developed as the combination of il]g and ft}g obs,

hj=o| kY || RS ], (19)

where o(-) denotes the tanh non-linear transformation, and H de-
notes the concatenation operation.

5 EXPERIMENTS

Datasets. To evaluate the effectiveness of our method, we con-
duct extensive experiments on four popular benchmarks: Amazon-
Movies, Amazon-Beauty, Amazon-CDs. These benchmark datasets
are publicly accessible, real-world data with various domains, sizes,
and sparsity levels. We filter out long-tailed users and items with
fewer than 10 interactions for all 3 datasets.

For each user, we randomly select 20% of the rated items as
ground truth for testing, The remaining 70% and 10% data con-
stitutes the training and validation set. Table 1 summarizes the
statistics of all the datasets.

Table 1: Statistics of public datasets.

Dataset # User # Item # Interaction Density
Movies 44,439 25,047 1,070,860 0.096%
Beauty 7,068 3,750 79,506 0.299%
CDs 43,169 35,648 777,426 0.051%

Amazon-Movies, Amazon-Beauty and Amazon-CDs: Amazon-
review” is a popular dataset for product recommendations [12]. We
select three subsets, Amazon-Movies, Beauty and CDs.

Evaluation Metrics. For all experiments, we evaluate the recom-
mendation accuracy of our model and baselines in terms of Recall@k
and NDCG@k. Because accuracy alone does not guarantee satisfac-
tory recommendations, we also assess serendipity@k [22], which
factors in how surprising and relevant a recommendation is. Sur-
prise is measured as a weighted average of the differences between
the probability that an item i is recommended for a specific user
and the probability that item i is recommended for any user. It is
computed [27] as:

1 1

S k= T ()| i (u)—P;(U), 0)*rel; )

RDP@k = o u;u(llk(u)l ieg(:u)max (Pi(u)—P; (), 0)xre (u))
(20)

Vi (w) |=rank, represents the probability of recom-

Here P;(u) = Ror -1
mending item i to a sbeciﬁc user u, and P;(U) = D(i)/ Yy eqs D(w)
represents the approximate probability of recommending that item
for any user. We use D(i) and D(u) to denote the degrees of item i
and user u in the observed graph.

Baselines. To demonstrate the effectiveness, we compare our
proposed model with the following methods:
1) Classical collaborative filtering methods: BPRMF [26], NeuMF [13]
2) Graph neural network-based CF methods: GC-MC [31], PinSAGE [38],
PinSAGE-LSTM, and NGCF [34].

Please refer to the supplementary material for the detailed de-
scriptions of the above baselines.
3) Our proposed methods:

e Base: To prove that our proposed BGCF framework can be ap-
plied to any graph learning based recommendation models, we
modified a simplified GNN-based base model from [29]. Instead

*http://jmcauley.ucsd.edu/data/amazon/



of applying GCN on self graphs, we utilize self connections as
an additional regularization term in the loss function. A graph
convolutionn layer with mean aggregator is applied on each side
of the user-item bipartite graph, to learn user & item embeddings
by aggregating from one-hop neighbors.

e BGCF: This is the main model that we propose; it incorporates
a Bayesian graph neural network to account for uncertainty in
the observed user-item interactions and employs node-copying
as a graph-generative model.

6 DISCUSSION AND ANALYSIS

In Table 2, we can see that the proposed model outperforms all the
baselines on recall@20 and .serendipity@20 metrics. This trend can
be observed across all considered datasets. Also, the base model is
consistently being outperformed by BGCF on all metrics, which
suggests that the Bayesian formulation is advantageous. In the
following section, we further investigate the advantages coming
from this model by considering alternative metrics focused on
diversity rather than recall. We also provide some insight into
which kind of user sees the most improvement and conduct a more
thorough ablation study.

6.1 Accuracy-Diversity Trade-off under
Ranking-based Techniques

Diversity (i.e. novelty) and accuracy metrics have different objective
that are at odds with each other, in that increasing one can result
in sacrificing the other. This trade-off has been studied in both the
natural language generation setting [2], where Caccia et al. evaluate
diversity vs. quality and show the danger of focusing on one metric,
and in recommendation [1], where the trade-off between diversity-
in-top-N and precision-in-top-N has been examined. In practice,
having a recommender system with a better accuracy/diversity
trade-off allows the platform to have more personalized recom-
mendations while maintaining comparable levels of accuracy. In
this section we evaluate the quality of accuracy-diversity trade-off
between our proposed algorithm and the second best model which
has the highest accuracy results than other baselines. To evaluate
on the quality of trade-off, we need a method that can modify one
metric. In [1], Adomavicius et al. proposed the application of an-
other ranking function rank (i, Tr) upon the top-k recommendation
list. The parameter Ty is a ranking threshold; only items initially
ranked above Ty are re-ranked.

In our case, we apply a popularity based ranking function,
rank (i, Tr) = D(i), where D(i) denotes the degree of an item. Given
a ranked recommendation list with k = 20, we re-rank the items
above T based on their popularity. Thus, items with high prediction
score but high popularity are demoted. Choosing different Tg values
allows the user to set the desired balance between accuracy and
novelty, e.g., when Tp = 22, we re-rank the top 22 items based
on popularity and produce the final top-20 results based on the
re-ranked list.

We conduct the re-ranking process on two datasets, comparing
the effect on our model and on NGCF. The novelty of recommenda-
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Figure 3: Re-ranking results on our proposed algorithm and
second base model on Amazon-CDs and Amazon-Movies un-
der thresholds Ty € {22, 24, 26, 28, 30}.
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Figure 4: Distribution of the relative improvement of our
proposed model BGCF over different baselines on Amazon-
CDs dataset with respect to user category (partitioned by de-
gree, i.e., the number of historical interactions).

From Figure 3 we can see that for any desired diversity-level (mea-
sured by Nov@20), our model has a higher accuracy than NGCF.

6.2 User density analysis

We analyse our results to highlight which type of users benefits
from this recommender model. In Figure 4, we can view the relative
improvement of our proposed model over the best preforming
baselines (BPR, NGCF, PinSage-lstm) for different groups of users
based on sparsity. The overall trend is that the algorithm offers the
most relative improvement over the alternative methods for users
with less items, hence for sparser users (user that have a history of
less than 40 clicks).

Statistics of Sampled Graphs. In Table 3, we analyse the quality
of the generated graphs from the copying model by computing the
edge overlap between the observed graph and the realizations. As
a reference point, we also report the same statistics obtained from
a copying model with an uninformative copying distribution {
(uniform over all nodes) G ~ p(G|Gops> {Uni) and from a random
degree-corrected model pyegre. (G) Which randomly assign edges
to each user while preserving each user’s degree. From this table
we can see that the copying model is able to maintain some of the
initial edges and can even discover some directly present in the
test set, while the other models generate graphs that contain less
than 2% of the initial links (training and test clicks combined). This



Table 2: The overall performance comparison. Bold values denote scenarios where a Wilcoxon signed rank test indicates a
statistically significant difference between the best and second-best (underline) algorithms

Amazon-CDs R@20 N@20 SRDP@20 ‘ Amazon-Movies R@20 N@20 SRDP@20 ‘ Amazon-Beauty R@20 N@20 SRDP@20
BPRMF 0.0794  0.0501 0.0097 BPRMF 0.0667  0.0436 0.0103 BPRMF 0.1312  0.0778 0.0100
NMF 0.1008  0.0604 0.0109 NMF 0.0820  0.0511 0.0110 NMF 0.1152  0.0692 0.0081
GC-MC 0.0791  0.0473 0.0093 GC-MC 0.0638  0.0401 0.0084 GC-MC 0.1082  0.0659 0.0077
PinSage 0.1265 0.0799 0.0134 PinSage 0.0872  0.0559 0.0114 PinSage 0.1378  0.0821 0.0138
PinSage-Istm  0.1269  0.0805 0.0135 PinSage-lstm 0.0886  0.0567 0.0115 PinSage-Istm 0.1354 0.0786 0.0135
NGCF 0.1258  0.0792 0.0129 NGCF 0.0866  0.0555 0.0112 NGCF 0.1513  0.0917 0.0151
Base 0.1455  0.0907 0.0161 Base 0.1023  0.0663 0.0132 Base 0.1432  0.0869 0.0145
BGCF 0.1506 0.0948 0.0168 BGCF 0.1066 0.0693 0.0139 BGCF 0.1534 0.0912 0.0153

Table 3: Overlap ratio of the generated samples with the ob-
served graph (%) averaged over 10 graphs spurious edges /
train edges/ test edges ratio (%).

Dataset Pdegree(g) P2(G|Gobss Guni) P(GlGops )

CDs 98.9/1.0/0.1 98.8/1.1/0.1 60.5/38.3/1.2
Movie 989/1.0/0.1 98.7/1.1/0.2 66.5/32.4/ 1.1
Beauty 98.5/14/0.1 98.4/15/0.1 80.8/18.3/0.9

highlights the sparsity of the datasets and further motivates the
use of the copying model.

6.3 Ablation Studies

As our proposed model involves multiple novel components, we
conduct an ablation study to assess their individual contributions
to the performance. In particular, we want to evaluate the benefits
coming from 1) using the sampled graphs from the node copying
model (~ G); 2) training jointly with the observed graph and the
sampled graphs (~ G + G,ps); and 3) using attention aggregation
on the sampled graphs together with mean aggregation. We report
results on partial architectures for one trial on the Amazon-CDs
dataset in Table 4. The first observation is that jointly training
with both graphs (mean + G55 + ~ G) is better than only training
with either the observed graphs or the sampled graphs. Secondly,
using an attention-based aggregation also yields a performance
improvement of the same order as the joint training.

Table 4: Ablation study for the proposed algorithm.

Architecture R@10 R@20 N@10 N@20
Base (mean + G,ps) 0.0971  0.1455  0.0761  0.0917
mean + ~ G 0.0989  0.1459  0.0769 0.0921
mean + Gops + ~ G 0.1004  0.1486  0.0784  0.0938
BGCF* 0.1016 0.1506 0.0791 0.0948

7 APPLICATION ON INDUSTRIAL DATASET

In addition to the benchmark comparison, we also validate the
superiority of our proposed model on an industrial dataset.

7.1 Experimental Settings

7.1.1  Datasets. We collect and sample 33 consecutive days of user-
app download records from the game center of a mainstream App
Store for training, and the next 7 days for testing. Compared with
the four publicly accessible datasets used above, this industrial
dataset has two unique characteristics:

1) Rich side information, including app features (e.g., app size,
category and etc), user features (e.g., user’s various behaviors in the
App Store), and context features (e.g., device type, operation time
and etc) are kept in the dataset. As side information is usually avail-
able in live recommender systems and is very valuable to alleviate
the cold-start problem, it is necessary to verify the performance of
our model under such a setting.

2) Benchmark datasets are usually split into training and test
sets in such a way that the interaction records of each user are
randomly distributed between the two sets. Every user in the test
set is therefore also present in the training set. However, in live
recommender systems, it is required to serve every user, including
those that have had no interactions in the system before, who are
called cold-start users. In order to better match this scenario, we
split our industrial dataset according to the timestamp, i.e., the first
33 consecutive days of records are the training set, while the next 7
days of records are the test set.

7.1.2  Evaluation Protocol. In the industrial dataset, there are 943,177
users, 9,768 apps and 4,000,000 download records. Each download

record in the dataset is considered as a positive instance, while the

interactions of a user and her unobserved apps in the universal app

set are all considered as negative. We evaluate the performance

of difference models on such binary labeled instances by LogLoss

(also known as cross entropy), a widely used metric in binary clas-
sification. A smaller LogLoss value indicates better performance.
We use the same baseline models described in Section 5.

7.2 Performance Comparison

We compare the performance of different models for three different
settings: all the test users, warm-start test users (who appear in the
training set) and cold-start test users (who do not appear in the
training set). The performance comparison on the industrial dataset
is presented in Table 5. As can be observed, our model has superior
performance compared to the best baseline (NGCF) by 2.17% in
terms of LogLoss on all the test users. This result demonstrates
the effectiveness of our model in recommendation scenarios with



Table 5: Performance Comparison (LogLoss) in Industrial
Dataset. The lower the better.

Warm-start Cold-start
All users
users users
BPR 0.37618 0.33590 0.41103
NMF 0.36028 0.31783 0.39588
GC-MC 0.36050 0.31189 0.40083
PinSage 0.36075 0.31032 0.40288
PinSage-1stm 0.35974 0.31090 0.40056
NGCF 0.35806 0.31158 0.39713
BGCF 0.35030 0.30624 0.38729

rich side information. More specifically, our model outperforms
the best baseline (NGCF) by 1.71% and 2.48% on warm-start users
and cold-start users, respectively. This improvement verifies the
superiority of our model in alleviating the cold-start issue.

8 CONCLUSION

In this work, we propose a novel recommendation model based
on Bayesian Graph Neural Networks and the node copying graph
generative model to naturally incorporate the uncertainty in the
underlying user-item interaction graph. From our extensive exper-
iments, our proposed model shows consistent recommendation
accuracy improvement over state-of-the-art methods for four pub-
lic benchmark datasets and one large-scale industrial dataset. Via
thorough analysis of case studies, we highlight that our proposed
Bayesian Graph Collaborative Filtering framework can bring more
recommendation diversity and alleviate the data sparsity problem.
Besides, using Mindspore, the all-scenario deep learning framework
developed by Huawei, the computation in the proposed approach
can be easily and automatically parallelized to execute on multiple
GPUs, rendering training extremely efficient.
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9 SUPPLEMENTARY
9.1 Baselines

To demonstrate its effectiveness, we compare our proposed model

with the following methods:

Classical collaborative filtering methods:

o BPRMF [26]: A general learning framework for personalized
ranking recommendation using implicit feedback.

o NeuMF [13]: NeuMF replaces the inner product with an MLP to
learn the user-item interaction function.

Graph neural network-based CF methods:

o GC-MC [31]: This is a graph-based auto-encoder approach that
treats recommendation as a matrix completion problem.

o PinSAGE [38]: PinSAGE is a recent industry application of graph
representation learning for recommendation. It deploys Graph-
Sage [11] on an item-item graph with both image and text infor-
mation as the input node features with mean aggregator. A hit
rate improvement of more than 20% is reported in [38].

o PinSAGE-LSTM: Same overall architecture as PinSAGE but we
replaced the mean aggregator with LSTM aggregation proposed

n [11]. Although LSTM is an undesirable aggregator because
it is not permutation invariant with respect to the ordering of
neighborhood, it has better expressive capability and can model
more complicated neighborhood relationships.

o NGCEF [34]: NGCF is the state-of-the-art graph-based CF method.
It explicitly integrates a bipartite graph structure into the embed-
ding learning process to model the high-order connectivity in
the user-item graph.

9.2 Industrial Application

9.2.1  System Panorama. In our implementation, the whole training
procedure is composed of 3 components, namely Graph Construc-
tion, Graph Sampling and Network Training as shown in Algo-
rithm 1. In Algorithm 1, N indicates the number of batches used
to learn the representation of nodes in the constructed bipartite
graph.

Algorithm 1: Overall training procedure

1 while not converge do

2 Graph Construction with node copying;
3 for i€ [0,N] do

4 Graph Sampling for current batch i;

5 Network Training for current batch i;
6 end

7 end

Graph Construction: In the Graph Construction component, the
bipartite graph is constructed based on the original user-item inter-
action records as well as the generated neighbors by the proposed
node copying method. The nodes in the constructed bipartite graph
contain user/item features.

Graph Sampling: In the Graph Sampling component, neighbor
nodes are sampled (instead of considering all the neighbor nodes) to
aggregate neighborhood information for a central node, in order to
maintain training efficiency. A key difference between graph neural

networks and traditional neural networks is that graph sampling
is the efficiency bottleneck and also a critical factor affecting per-
formance. Therefore we will elaborate on the details of the graph
sampling methodology in Section 9.2.2.

Network Training: Each edge in the constructed bipartite graph
is treated as a positive instance. For each such positive instance,
several negative instances (each of which represents a user and an
unobserved item) are sampled to conduct pair-wise training. Then
the Network Training component performs the forward computing
and backward updating.

9.2.2 Graph Sampling. As discussed in Section 2, random walk
and its variants are widely used to retrieve the neighbor nodes of
a given central node in GNN based algorithms. When we utilize
Random Walk as the neighbor sampling method, two key factors
should be considered. The first factor is the length of each random
walk. If 2-hop neighbors of a central node are needed, then its
1-hop neighbors are sampled and afterwards 1-hop neighbors of
such sampled neighbors of the target node are also sampled. That
is to say, the length of a random walk determines the number of
neighbours sampled in each random walk. The second factor is the
number of random walks starting at a central node.

To improve the efficiency of graph sampling, we incorporate
three practical techniques, namely Layer-wise Uniqueness, Parallel
Sampling and Asynchronous Sampling.

9.2.3 Layer-wise Uniqueness. To reduce the number of random
walks, we sample neighbors while enforcing layer-wise uniqueness.
This means that when we sample the neighbors for a set of S nodes
in the same layer, we first generate the set S, of unique target nodes.
The indices in the original array are recovered using the gather
operation. The duplicate nodes share the same neighbors, therefore
we only need to sample the neighbors of unique nodes.

By enforcing layer-wise uniqueness we can reduce the number
of random walks dramatically and therefore improve the training
efficiency. However, as it eliminates duplicate neighbors at each
layer, it distorts the neighborhood distributions, which may de-
grade the accuracy of the algorithms. Therefore there is a trade-off
between accuracy and efficiency.

9.2.4  Parallel sampling. When performing neighbor sampling for
each layer, the random walks are independent. Therefore, we can
perform parallel random walks with multi-processing and multi-
threading, to accelerate the sampling procedure for one batch.

9.2.5  Asynchronous Sampling. As Graph Sampling and Network
Training are disjoint across different batches, they can be scheduled
sequentially or in parallel. In sequential scheduling, Graph Sampling
and Network Training are processed sequentially, i.e., Network
Training starts when the neighbor nodes of the current batch are
sampled, and the Graph Sampling for the next batch is not started
until the Network Training of the current batch finishes. Obviously,
this is inefficient. We create multiple threads to perform Graph
Sampling in parallel to Network Training, so that the network keeps
training without being interrupted by the sampling procedure.
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