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ABSTRACT
Graph Convolutional Neural Networks (GNN) based recommender
systems are state-of-the-art since they can capture the high or-
der collaborative signals between users and items. However, they
suffer from the feature leakage problem since label information
determined by edges can be leaked into node embeddings through
the GNN aggregation procedure guided by the same set of edges,
leading to poor generalization. We propose the accurate removal
algorithm to generate the final embedding. For each edge, the em-
beddings of the two end nodes are evaluated on a graph with that
edge removed. We devise an algebraic trick to efficiently compute
this procedure without explicitly constructing separate graphs for
the LightGCN model. Experiments on four datasets demonstrate
that our algorithm can perform better on datasets with sparse in-
teractions, while the training time is significantly reduced.

CCS CONCEPTS
• Information systems → Recommender systems; Collabora-
tive filtering; • Computing methodologies→ Learning to rank.
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1 INTRODUCTION
Recommender systems are ubiquitous in the world overloaded
with information. The primary task of a recommender system is
to provide relevant items to users based on past user behaviour,
such as download, purchase, liking. To improve user satisfaction,
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collaborative filtering (CF) based methods have been extensively
adopted for recommendation systems [5, 9, 10, 13, 14, 16, 17, 19],
which assumes that users with similar interactions on a subset of
items are more likely to have similar preferences on a new set of
items. Latent embeddings of users and items are learned according
to historical data to predict the ranking of items for a given user.
Neural network models are proposed [5, 9, 16, 17, 19] to capture
non-linear similarity relations between users and items to boost
the performance.

Recently, Graph Convolutional Neural Networks (GNN) [2, 6, 12]
demonstrate extraordinary capacity on learning representation for
graph information, and increasing amount of recommender sys-
tems are designed and proposed with GNN [1, 8, 22, 24, 27, 30–32].
A bipartite graph can be naturally formulated in recommender
systems, where users and items are nodes, and the user-item in-
teractions define the edges. GNN based recommender systems can
learn high order collaborative signals and are among the state-of-
the-art models. The basic GNN models have been developed and
evolved towards two main directions: increasing the quality of
representations [23, 24, 28, 29, 32] and improving the efficiency of
training and inferencing [15, 25, 26, 31]. Interestingly, [8] proposes
a simplified GNN model that yields state-of-the-art performance
while is efficient to train and inference. They find that the non-linear
transformation and learnable projection matrices are unnecessary
for GNN based recommender systems. Due to its excellent perfor-
mance and efficiency, we derive our results based on the LightGCN
model.

Despite that vast progress on GNN based recommender systems,
few works have studied the feature leakage problem. The feature
leakage problem occurs in a model or training algorithm if the infor-
mation such as a duplicated label, a proxy for the label, or the label
itself is used as a feature [3]. Moreover, such a feature is not always
available during the inferencing phase, resulting in poor gener-
alization. Unfortunately, most GNN based recommender systems
suffer from the feature leakage problem. Edges are the target train-
ing labels, while they also function as the signal to aggregate the
embeddings from neighbouring nodes. The training labels (edges)
information is partially integrated into the node embeddings after
the GNN layers. [33] is one of the earliest works that solves the
feature leakage problem in GNN based models for the link predic-
tion problem. Although recommender systems can be regarded as a
link prediction task, [33] relies on constructing different subgraphs
for different links, which is not scalable for recommender systems.
[32] is the most relevant to our work. They remove all the related
edges in the labels from the graph in each mini-batch. However,
this aggressive approach might leave too much information behind,
leading to sub-optimal performance, especially for sparse graphs.
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In this work, we propose EFLEC, an Efficient Feature LEakage
Correction algorithm for GNN based recommender systems. We
consider an accurate removal approach, which evaluates the embed-
ding of nodes for each edge over a separate graph with that specific
edge removed. Compared with [32], this approach can accurately
remove the problematical edge during GNN aggregation for its two
end nodes without sacrificing potentially valuable edges within the
same mini-batch. However, a direct implementation for accurate
removal is computationally infeasible. We algebraically derive the
relation between accurate removal embeddings and the original
embeddings and propose a dynamic programming algorithm to
efficiently compute the accurate removal embeddings based on
the original embeddings (which can be efficiently computed). We
conduct extensive experiments to verify the effectiveness of our
algorithm.

2 PRELIMINARIES
2.1 Recommender Systems with GNN Encoder
Recommender Systems with Embedding Learning. One com-
mon design for recommendation systems learns user and item
embeddings eu and ei for each user u and item i in a common
latent space based on their historical interactions. Predominantly,
the inner product of these embeddings ŷui = e⊺u · ei is used to
depict similarity between a given user-item pair. During inference,
we pick the top-k items with the highest predicted similarity for a
given user.

GNN Encoder. LightGCN [8] is the state-of-the-art GNN based
model to learn informative user and item embeddings. The main
idea is that we can naturally treat the historical interactions be-
tween users and items as a graph G := (V, E), whereV = U ∪ I
is the set of nodes contains user nodesU and item nodes I, and E
is the set of edges where edge (u, i) ∈ E if and only if user u has
interacted with item i . LetA ∈ {0, 1} |V |×|V | be the adjacent matrix
of the graph G, the normalized adjacent matrix Ã = D−1/2AD−1/2,
where D is the diagonal matrix with Dii =

∑
j Ai j . Without con-

fusion, we abuse the notation A to represent Ã in the remaining
paper. Graph convolution operations are iteratively conducted to
aggregate the features of neighbour nodes to inject the graph struc-
ture information into the final embeddings. Specifically, for each
node (user or item) j, the embedding at layer k + 1 is evaluated as

e(k+1)
j = Aj ,∗E(k ), (1)

where the row vector e(k+1)
j denotes the embedding of node j at

layer k + 1, Aj ,∗ denotes the jth row of A and E(k ) is the matrix
containing all user nodes and item nodes embeddings at layer k as
row vectors. e(0)j is a randomly initialized learnable embedding for
node j. The final embedding of a node j with a K layer model are
defined as

ej =
1

K + 1

K∑
k=0

e(k)j =
1

K + 1

K∑
k=0

Ak
j ,∗E
(0). (2)

Model Training. To train a ranking model, we use the Bayesian
Personalized Ranking (BPR) [20] loss, which is defined on the set
of triples D = {(u, t,n)|u ∈ U, t,n ∈ I, (u, t) ∈ E, (u,n) < E}, and
LBPR = −

∑
(u ,t ,n)∈D σ (ŷut−ŷun ) , whereσ is the sigmoid function.

In practice, we adopt mini-batch stochastic gradient decent (SGD)
method to boost the training efficiency. To evaluate the loss on a
mini-batch of triples in D, we only need to evaluate the user and
item embeddings that appears in the mini-batch.

2.2 Feature Leakage Problem
A training algorithm suffers from the feature leakage problem if
the information such as a duplicated label, a proxy for the label,
or the label itself is used as a feature [3]. Feature leakage problem
leads to poor generalization since the label information is usually
absent during inferencing.

Unfortunately, the proxy of labels appears in the training proce-
dure in the system we introduced in Sec. 2.1. The main reason is
that each edge in E performs dual roles in the training procedure.
For each triple (u, t,n) ∈ D, essentially a label in BPR loss, u and
t is determined by the edge (u, t) ∈ E, so edge (u, t) serves a role
to set the training label. On the other hand, edge (u, t) provides
a signal for the GNN aggregation in (1). Therefore for each triple
(u, t,n), the GNN aggregation will reinforce the similarity between
the embeddings eu and et , but not for eu and en . However, this
reinforcement never appears in the inferencing phase, leading to
degraded generalization.

2.3 Accurate Removal and Sample-and-remove
Methods

To alleviate the feature leakage problem, one straightforward idea
is to remove the related edge in the message passing procedure.
Specifically, for each triple (u, t,n), we evaluate a modified version
of the embeddings of node u and t based on the graph with edge
(u, t) removed, i.e.,G−(u ,t ) = {V, E\{(u, t)}}. We call this approach
accurate removal method. However, the accurate removal method is
computationally infeasible in practice since for each triple (u, t,n)
in a mini-batch, we have to evaluate the embeddings on a new
graph G−(u ,t ).

[32] proposes a slightly different variant. Instead of generating
a new graph for each triple, they construct a single graph for each
mini-batch, simply removing all the edges (u, t) in the given mini-
batch of triples. We call it the sample-and-remove (S&R ) method.
Although S&R is shown to be effective and efficient in solving the
feature leakage problem [32], the aggressive removing ignores a
substantial amount of information, especially when the original
graph is sparse.

Is it possible to use the graph information as an accurate removal
method while keeping an acceptable computation complexity as
the S&R method? The answer is definitely yes.

3 PROPOSED ALGORITHM
Our major goal is to conduct the accurate removal method with
similar computation complexity to the original LightGCN model.
The main idea is to seek the relation of the node embeddings from
the vanilla LightGCN and those after accurate removal method. In
the end, we should find a quick transformation algorithm based on
the embeddings E(k ), ∀k generated by vanilla method. Specifically,
for each triple (u, t,n), we need to evaluate the final embedding
based on the graph G−(u ,t ). We use ˆover the existing variables
to denote the version under the graph G−(u ,t ). The problem is to



compute êz = 1
K+1

∑K
k=0 Â

k
z,∗E(0), for z ∈ {u, t}. As for the node

n, we directly use the original final embedding en from LightGCN.
Essentially, we need to evaluate Âk

z,∗E(0) for ∀k based on Ak
z,∗E(0)

for ∀k .

3.1 Analysis
We derive the relation between Âk

z,∗E(0) and Ak
z,∗E(0). Note that for

vanilla version, we have

Ak
z,∗E

(0) = Az,∗Ak−1E(0) =
∑

i ∈N(z)

Az,iAk−1
i ,∗ E(0) (3)

=
∑

i ∈N(z)

Azi
∑

j ∈N(i)

Ai jAk−2
j ,∗ E

(0), (4)

where (4) is achieved by applying (3) twice. And similarly for accu-
rate removal version, we have

Âk
z,∗E

(0) =
∑

i ∈N̂(z)

Âzi
∑

j ∈N̂(i)

Âi j Âk−2
j ,∗ E

(0). (5)

Another fact is the relation between A and Â,

Âi j =


Ai j , if i , u, j , t,

|N(u)|/|N̂ (u)|Ai j , if i = u, j , t,

|N(t)|/|N̂ (t)|Ai j , if i , u, j = t,
0, ifi = u, j = t .

(6)

Combining (4) (5) and (6) and subtracting a weighted (5) from
(4), we have

Ak
z,∗E

(0) − |N̂(z)|/|N(z)|Âk
z,∗E

(0) = Azz̄Ak−1
z,∗ E

(0) + ∆kz , (7)

where

∆kz =
∑

i ∈N̂(z)

Azi

( ∑
j ∈N̂(i)

Ai j (Ak−2
j ,∗ − Â

k−2
j ,∗ )︸                          ︷︷                          ︸

P1

+AizAk−2
z,∗ − Âiz Âk−2

z,∗

)
E(0),

(8)

and z̄ denotes the other end points on the edge (u, t) from z. To
simply the computation, we adopt an approximated version of ∆̃kz
by ignoring P1 in (8), and eventually get

∆̃kz = Ak−2
z,∗ E

(0) ·
∑

i ∈N̂(z)

A2
zi − Â

k−2
z,∗ E

(0) · | ˆN(z)|/|N(z)|
∑

i ∈N̂(z)

Â2
zi .

(9)

We can verify that when k = 0, 1, ∆kz = 0, so we define ∆̃kz = 0
for k = 0, 1. By (7) and (9), we get a way to represent Âk

z,∗E(0) by
Ak
z,∗E(0) and Âk−2

z,∗ E(0), we are ready to build an efficient algorithm
to compute Âk

z,∗E(0) for ∀k via dynamic programming.
Due to the approximation in (9), the results from our algorithm

are equivalent to the accurate removal method only under the
condition that the number of the model layers K ≤ 2. For more
layers, we could further reduce the error by expanding (4) and (5)
to more layers and derive the relations with a similar procedure.
However, more layers will introduce more computation complexity.
We adopt the current design to strike a balance between efficiency
and accuracy.

Algorithm 1: EFLEC for a K-layer LightGCN model.
Input :The target node z, the triple (u, t,n), the original

embeddings from LightGCN AkE(0) for
k = 0, 1, . . . ,K , normalized adjacent matrix A.

Output :Leakage corrected embedding êz .
T ← {e(0)z };
for k ← 1 to K do

Compute ∆̃kz according to (9);
According to (7), compute Âk

z,∗E(0) =

|N(z)|/|N̂ (z)|
(
Ak
z,∗E(0) −

(
Azz̄Ak−1

z,∗ E(0) + ∆̃kz
))

;

T ← T ∪ {Âk
z,∗E(0)};

Compute êz by taking the mean of all the elements in T ;
return êz ;

Table 1: Dataset statistics.

Dataset #User #Items #Interactions Density

Instant 63,884 10,664 174,527 2e-4
Instrument 54,272 33,030 161,105 9.8e-5
Yelp 31,668 38,048 1,561,406 1.3e-3
Gowalla 29,858 40,981 1,027,370 8.4e-4

3.2 Main Algorithm
Algorithm 1 depicts the procedure to efficiently evaluate the embed-
dings for z ∈ {u, t} in each triple (u, t,n) . We can repeatedly apply
the same procedure efficiently for all the triples in a mini-batch
since they can reuse the same input. Although (9) is dependent on
Âk−2
z,∗ E(0), we should already have it in earlier iteration at the time

of evaluating Âk
z,∗E(0).

4 EXPERIMENT
4.1 Experimental Settings
4.1.1 Dataset. We use datasets with two levels of graph density.
Statistics for all datasets are reported in Table 1. To demonstrate
the effectiveness of our technique on datasets with low average
node degree, we use Amazon Instant Video (Instant) and Amazon
Musical Instrument datasets (Instrument) [7, 18]1. We filter out
interactions with a rating of less than four and follow a 2-core
setting for these datasets, i.e. we only retain user and item nodes
with at least two interactions. Under this setting, we can have at
least one training and one testing interaction for node. We split the
interactions into train/valid/test sets with a 0.7/0.1/0.2 split ratio.
We ensure that our train and test split have at least one interaction
for each node.

To test the applicability of our technique on the widely used
10-core setting in literature, we use Yelp2018 (Yelp) and Gowalla
datasets provided by authors of LightGCN2. As the authors do
not provide a validation set, we further split the training data into
train/valid sets with a 0.9/0.1 split ratio.

1http://jmcauley.ucsd.edu/data/amazon/links.html
2https://github.com/kuandeng/LightGCN/tree/master/Data
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Table 2: Mean results of recall@20, nDCG@20, and time per epoch (T) in seconds. Bold represent the best and underline
represents the second best. Vanila is not considered in the ranking for time.

Method Instant Instrument Yelp Gowalla

Recall nDCG T(s) Recall nDCG T(s) Recall nDCG T(s) Recall nDCG T(s)

2
La
ye
rs

Vanilla 0.1698 0.0805 2.96 0.0392 0.0187 2.75 0.0577 0.0467 110.13 0.1623 0.1375 82.65
DropEdge 0.1656 0.0776 4.43 0.0465 0.0216 4.57 0.0581 0.0469 259.93 0.1622 0.1375 130.01
S&R 0.2202 0.1047 5.23 0.0541 0.0257 4.62 0.0576 0.0466 444.94 0.1628 0.1379 259.49
EFLEC 0.2207 0.1029 3.11 0.0546 0.0260 3.06 0.0583 0.0469 122.75 0.1630 0.1382 72.88

3
La
ye
rs

Vanilla 0.1776 0.0874 4.52 0.0471 0.0216 3.55 0.0604 0.0489 136.23 0.1677 0.1414 67.15
DropEdge 0.1806 0.0825 3.65 0.0521 0.0241 3.70 0.0603 0.0487 219.73 0.1690 0.1422 105.28
S&R 0.2160 0.1059 5.72 0.0574 0.0270 5.18 0.0600 0.0485 465.03 0.1687 0.1420 190.42
EFLEC 0.2155 0.1046 4.56 0.0573 0.0271 4.15 0.0602 0.0485 145.11 0.1689 0.1422 71.06

Table 3: Mini-batch size studies on Instant dataset. R=Recall,
N=nDCG, FB=Full-batch.

Batch size Method R@20 R@10 N@20 N@10

FB/4
Vanilla 0.1546 0.1132 0.0729 0.0624
S&R 0.2047 0.1513 0.0963 0.0827
EFLEC 0.2126 0.1529 0.0963 0.0811

FB/2
Vanilla 0.1553 0.1104 0.0720 0.0606
S&R 0.1962 0.1425 0.0930 0.0793
EFLEC 0.2028 0.1448 0.0948 0.0799

FB
Vanilla 0.1437 0.1006 0.0652 0.0542
S&R 0.1116 0.0740 0.0475 0.0379
EFLEC 0.1941 0.1351 0.0871 0.0720

4.1.2 Hyper-parameters. We follow the exact setting as LightGCN.
Embedding size is set to 64, all the parameters are initialized with
Xavier initialization [4] and we use Adam [11] optimizer. We use
symmetric normalization without self-edges.

For all datasets we use 1e-3 learning rate and weight decay factor
λ = 1e − 4. For Instant and Instrument, we use a mini-batch size of
2048. For Yelp and Gowalla, we use a mini-batch size of 1024. We
run experiments for 500 epochs and use the checkpoint with the
best validation performance for computing test results.

4.1.3 Baselines. We compare our method to following baselines:
• Vanilla. LigthGCN model without any modification.
• DropEdge [21]. Originally proposed for node classification,
this method randomly drops edges from the training graph
at the beginning of each training epoch. After edge dropping,
the adjacency matrix is re-normalized. We set the dropout
probability to 0.5.
• Sample-and-remove (S&R ). All the edges that appear in the
mini-batch of triples are removed from the graph before
executing the mini-batch. After removing the edges, the
modified training adjacency matrix is re-normalized.

4.2 Main Results
Table 2 compares baseline methods with EFLEC on all the datasets
for two-layer and three-layer LightGCN models and presents the

mean of 5 trials. We can observe that all the methods addressing fea-
ture leakage problems demonstrate an equal or better performance
than the vanilla counterpart. For Instant and Instrument, the data
sets with lower average node degrees, we observe that S&R and
EFLEC significantly improve over Vanilla. Specifically, a two-layer
model achieves 30%/39% gain with Recall@20 metric. For Yelp and
Gowalla, S&R and EFLEC get only marginal or no improvement
over Vanilla. The high average node degrees make the feature leak-
age problem less severe since the proxy label information occupies
much less weight in the final embeddings. Overall, our EFLEC al-
gorithm achieves a slight but stable improvement over S&R on the
two-layer models since it fully utilizes the graph information. On
the three-layer models, their performance is similar to each other.

All the leakage correction algorithms run slower than the vanilla.
S&R is the most time-consuming due to the time consuming proce-
dure of reconstructing the adjacent matrix and normalizing it on
every mini-batch. Our EFLEC is much more efficient than S&R since
it mainly relies on the original node embedding from LightGCN,
and it does not need to reconstruct the adjacent matrix. DropEdge
is efficient, but its performance on recall is not as good as S&R and
EFLEC, especially on Instant and Instrument data sets.

4.3 Extended Studies
Although S&R achieves a slightly worse but comparable model
performance against our EFLEC under the current setting, we argue
that EFLEC has more advantage when training the model under
larger mini-batch sizes. We train models with mini-batch of size
{Full-batch, Full-batch/2, Full-batch/4}. Other hyper-parameters are
kept the same as our main results. As observed in Table 3, the
performance of the S&R method is halved in the extreme Full-batch
setting. Whereas EFLEC is less affected as mini-batch size increases
since EFLEC always utilizes the complete graph information while
the aggressive S&Rmethod drops too much information under large
mini-batch sizes.

5 CONCLUSION
This work studies the feature leakage problem on GNN based rec-
ommendation systems. We propose EFLEC, an efficient algorithm
that corrects the feature leakage problem. Empirical results demon-
strate that our algorithm can improve the performance on sparse



datasets while the computation time is close to the vanilla algo-
rithm without correction. Although we developed our technique
for LightGCN, the algebraic idea can be extended to a wide variety
of GNN based models, and we would like to discuss it in future
works.
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