
EFLEC: Efficient Feature-LEakage Correction in GNN based
Recommendation Systems

Ishaan Kumar∗
ishaan.kumar@huawei.com
Huawei Technologies Canada
Montreal, Quebec, Canada

Yaochen Hu∗
yaochen.hu@huawei.com

Huawei Technologies Canada
Montreal, Quebec, Canada

Yingxue Zhang
yingxue.zhang@huawei.com
Huawei Technologies Canada
Montreal, Quebec, Canada

ABSTRACT
Graph Convolutional Neural Networks (GNN) based recommender
systems are state-of-the-art since they can capture the high or-
der collaborative signals between users and items. However, they
suffer from the feature leakage problem since label information
determined by edges can be leaked into node embeddings through
the GNN aggregation procedure guided by the same set of edges,
leading to poor generalization. We propose the accurate removal
algorithm to generate the final embedding. For each edge, the em-
beddings of the two end nodes are evaluated on a graph with that
edge removed. We devise an algebraic trick to efficiently compute
this procedure without explicitly constructing separate graphs for
the LightGCN model. Experiments on four datasets demonstrate
that our algorithm can perform better on datasets with sparse in-
teractions, while the training time is significantly reduced.

CCS CONCEPTS
• Information systems → Recommender systems; Collabora-
tive filtering; • Computing methodologies→ Learning to rank.

KEYWORDS
Feature leakage correction; recommendation systems; graph neural
networks

ACM Reference Format:
Ishaan Kumar, Yaochen Hu, and Yingxue Zhang. 2022. EFLEC: Efficient
Feature-LEakage Correction in GNN based Recommendation Systems. In
Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’22), July 11–15, 2022, Madrid,
Spain. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3477495.
3531770

1 INTRODUCTION
Recommender systems are ubiquitous in the world overloaded
with information. The primary task of a recommender system is
to provide relevant items to users based on past user behaviour,
such as download, purchase, liking. To improve user satisfaction,

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3531770

collaborative filtering (CF) based methods have been extensively
adopted for recommendation systems [5, 9, 10, 13, 14, 16, 17, 19],
which assumes that users with similar interactions on a subset of
items are more likely to have similar preferences on a new set of
items. Latent embeddings of users and items are learned according
to historical data to predict the ranking of items for a given user.
Neural network models are proposed [5, 9, 16, 17, 19] to capture
non-linear similarity relations between users and items to boost
the performance.

Recently, Graph Convolutional Neural Networks (GNN) [2, 6, 12]
demonstrate extraordinary capacity on learning representation for
graph information, and increasing amount of recommender sys-
tems are designed and proposed with GNN [1, 8, 22, 24, 27, 30–32].
A bipartite graph can be naturally formulated in recommender
systems, where users and items are nodes, and the user-item in-
teractions define the edges. GNN based recommender systems can
learn high order collaborative signals and are among the state-of-
the-art models. The basic GNN models have been developed and
evolved towards two main directions: increasing the quality of
representations [23, 24, 28, 29, 32] and improving the efficiency of
training and inferencing [15, 25, 26, 31]. Interestingly, [8] proposes
a simplified GNN model that yields state-of-the-art performance
while is efficient to train and inference. They find that the non-linear
transformation and learnable projection matrices are unnecessary
for GNN based recommender systems. Due to its excellent perfor-
mance and efficiency, we derive our results based on the LightGCN
model.

Despite that vast progress on GNN based recommender systems,
few works have studied the feature leakage problem. The feature
leakage problem occurs in a model or training algorithm if the infor-
mation such as a duplicated label, a proxy for the label, or the label
itself is used as a feature [3]. Moreover, such a feature is not always
available during the inferencing phase, resulting in poor gener-
alization. Unfortunately, most GNN based recommender systems
suffer from the feature leakage problem. Edges are the target train-
ing labels, while they also function as the signal to aggregate the
embeddings from neighbouring nodes. The training labels (edges)
information is partially integrated into the node embeddings after
the GNN layers. [33] is one of the earliest works that solves the
feature leakage problem in GNN based models for the link predic-
tion problem. Although recommender systems can be regarded as a
link prediction task, [33] relies on constructing different subgraphs
for different links, which is not scalable for recommender systems.
[32] is the most relevant to our work. They remove all the related
edges in the labels from the graph in each mini-batch. However,
this aggressive approach might leave too much information behind,
leading to sub-optimal performance, especially for sparse graphs.

https://doi.org/10.1145/3477495.3531770
https://doi.org/10.1145/3477495.3531770
https://doi.org/10.1145/3477495.3531770

In this work, we propose EFLEC, an Efficient Feature LEakage
Correction algorithm for GNN based recommender systems. We
consider an accurate removal approach, which evaluates the embed-
ding of nodes for each edge over a separate graph with that specific
edge removed. Compared with [32], this approach can accurately
remove the problematical edge during GNN aggregation for its two
end nodes without sacrificing potentially valuable edges within the
same mini-batch. However, a direct implementation for accurate
removal is computationally infeasible. We algebraically derive the
relation between accurate removal embeddings and the original
embeddings and propose a dynamic programming algorithm to
efficiently compute the accurate removal embeddings based on
the original embeddings (which can be efficiently computed). We
conduct extensive experiments to verify the effectiveness of our
algorithm.

2 PRELIMINARIES
2.1 Recommender Systems with GNN Encoder
Recommender Systems with Embedding Learning. One com-
mon design for recommendation systems learns user and item
embeddings eu and ei for each user u and item i in a common
latent space based on their historical interactions. Predominantly,
the inner product of these embeddings ŷui = e⊺u · ei is used to
depict similarity between a given user-item pair. During inference,
we pick the top-k items with the highest predicted similarity for a
given user.

GNN Encoder. LightGCN [8] is the state-of-the-art GNN based
model to learn informative user and item embeddings. The main
idea is that we can naturally treat the historical interactions be-
tween users and items as a graph G := (V, E), whereV = U ∪ I
is the set of nodes contains user nodesU and item nodes I, and E
is the set of edges where edge (u, i) ∈ E if and only if user u has
interacted with item i . LetA ∈ {0, 1} |V |×|V | be the adjacent matrix
of the graph G, the normalized adjacent matrix Ã = D−1/2AD−1/2,
where D is the diagonal matrix with Dii =

∑
j Ai j . Without con-

fusion, we abuse the notation A to represent Ã in the remaining
paper. Graph convolution operations are iteratively conducted to
aggregate the features of neighbour nodes to inject the graph struc-
ture information into the final embeddings. Specifically, for each
node (user or item) j, the embedding at layer k + 1 is evaluated as

e(k+1)
j = Aj ,∗E(k), (1)

where the row vector e(k+1)
j denotes the embedding of node j at

layer k + 1, Aj ,∗ denotes the jth row of A and E(k) is the matrix
containing all user nodes and item nodes embeddings at layer k as
row vectors. e(0)j is a randomly initialized learnable embedding for
node j. The final embedding of a node j with a K layer model are
defined as

ej =
1

K + 1

K∑
k=0

e(k)j =
1

K + 1

K∑
k=0

Ak
j ,∗E
(0). (2)

Model Training. To train a ranking model, we use the Bayesian
Personalized Ranking (BPR) [20] loss, which is defined on the set
of triples D = {(u, t,n)|u ∈ U, t,n ∈ I, (u, t) ∈ E, (u,n) < E}, and
LBPR = −

∑
(u ,t ,n)∈D σ (ŷut−ŷun) , whereσ is the sigmoid function.

In practice, we adopt mini-batch stochastic gradient decent (SGD)
method to boost the training efficiency. To evaluate the loss on a
mini-batch of triples in D, we only need to evaluate the user and
item embeddings that appears in the mini-batch.

2.2 Feature Leakage Problem
A training algorithm suffers from the feature leakage problem if
the information such as a duplicated label, a proxy for the label,
or the label itself is used as a feature [3]. Feature leakage problem
leads to poor generalization since the label information is usually
absent during inferencing.

Unfortunately, the proxy of labels appears in the training proce-
dure in the system we introduced in Sec. 2.1. The main reason is
that each edge in E performs dual roles in the training procedure.
For each triple (u, t,n) ∈ D, essentially a label in BPR loss, u and
t is determined by the edge (u, t) ∈ E, so edge (u, t) serves a role
to set the training label. On the other hand, edge (u, t) provides
a signal for the GNN aggregation in (1). Therefore for each triple
(u, t,n), the GNN aggregation will reinforce the similarity between
the embeddings eu and et , but not for eu and en . However, this
reinforcement never appears in the inferencing phase, leading to
degraded generalization.

2.3 Accurate Removal and Sample-and-remove
Methods

To alleviate the feature leakage problem, one straightforward idea
is to remove the related edge in the message passing procedure.
Specifically, for each triple (u, t,n), we evaluate a modified version
of the embeddings of node u and t based on the graph with edge
(u, t) removed, i.e.,G−(u ,t) = {V, E\{(u, t)}}. We call this approach
accurate removal method. However, the accurate removal method is
computationally infeasible in practice since for each triple (u, t,n)
in a mini-batch, we have to evaluate the embeddings on a new
graph G−(u ,t).

[32] proposes a slightly different variant. Instead of generating
a new graph for each triple, they construct a single graph for each
mini-batch, simply removing all the edges (u, t) in the given mini-
batch of triples. We call it the sample-and-remove (S&R) method.
Although S&R is shown to be effective and efficient in solving the
feature leakage problem [32], the aggressive removing ignores a
substantial amount of information, especially when the original
graph is sparse.

Is it possible to use the graph information as an accurate removal
method while keeping an acceptable computation complexity as
the S&R method? The answer is definitely yes.

3 PROPOSED ALGORITHM
Our major goal is to conduct the accurate removal method with
similar computation complexity to the original LightGCN model.
The main idea is to seek the relation of the node embeddings from
the vanilla LightGCN and those after accurate removal method. In
the end, we should find a quick transformation algorithm based on
the embeddings E(k), ∀k generated by vanilla method. Specifically,
for each triple (u, t,n), we need to evaluate the final embedding
based on the graph G−(u ,t). We use ˆover the existing variables
to denote the version under the graph G−(u ,t). The problem is to

compute êz = 1
K+1

∑K
k=0 Â

k
z,∗E(0), for z ∈ {u, t}. As for the node

n, we directly use the original final embedding en from LightGCN.
Essentially, we need to evaluate Âk

z,∗E(0) for ∀k based on Ak
z,∗E(0)

for ∀k .

3.1 Analysis
We derive the relation between Âk

z,∗E(0) and Ak
z,∗E(0). Note that for

vanilla version, we have

Ak
z,∗E

(0) = Az,∗Ak−1E(0) =
∑

i ∈N(z)

Az,iAk−1
i ,∗ E(0) (3)

=
∑

i ∈N(z)

Azi
∑

j ∈N(i)

Ai jAk−2
j ,∗ E

(0), (4)

where (4) is achieved by applying (3) twice. And similarly for accu-
rate removal version, we have

Âk
z,∗E

(0) =
∑

i ∈N̂(z)

Âzi
∑

j ∈N̂(i)

Âi j Âk−2
j ,∗ E

(0). (5)

Another fact is the relation between A and Â,

Âi j =

Ai j , if i , u, j , t,

|N(u)|/|N̂ (u)|Ai j , if i = u, j , t,

|N(t)|/|N̂ (t)|Ai j , if i , u, j = t,
0, ifi = u, j = t .

(6)

Combining (4) (5) and (6) and subtracting a weighted (5) from
(4), we have

Ak
z,∗E

(0) − |N̂(z)|/|N(z)|Âk
z,∗E

(0) = Azz̄Ak−1
z,∗ E

(0) + ∆kz , (7)

where

∆kz =
∑

i ∈N̂(z)

Azi

(∑
j ∈N̂(i)

Ai j (Ak−2
j ,∗ − Â

k−2
j ,∗)︸ ︷︷ ︸

P1

+AizAk−2
z,∗ − Âiz Âk−2

z,∗

)
E(0),

(8)

and z̄ denotes the other end points on the edge (u, t) from z. To
simply the computation, we adopt an approximated version of ∆̃kz
by ignoring P1 in (8), and eventually get

∆̃kz = Ak−2
z,∗ E

(0) ·
∑

i ∈N̂(z)

A2
zi − Â

k−2
z,∗ E

(0) · | ˆN(z)|/|N(z)|
∑

i ∈N̂(z)

Â2
zi .

(9)

We can verify that when k = 0, 1, ∆kz = 0, so we define ∆̃kz = 0
for k = 0, 1. By (7) and (9), we get a way to represent Âk

z,∗E(0) by
Ak
z,∗E(0) and Âk−2

z,∗ E(0), we are ready to build an efficient algorithm
to compute Âk

z,∗E(0) for ∀k via dynamic programming.
Due to the approximation in (9), the results from our algorithm

are equivalent to the accurate removal method only under the
condition that the number of the model layers K ≤ 2. For more
layers, we could further reduce the error by expanding (4) and (5)
to more layers and derive the relations with a similar procedure.
However, more layers will introduce more computation complexity.
We adopt the current design to strike a balance between efficiency
and accuracy.

Algorithm 1: EFLEC for a K-layer LightGCN model.
Input :The target node z, the triple (u, t,n), the original

embeddings from LightGCN AkE(0) for
k = 0, 1, . . . ,K , normalized adjacent matrix A.

Output :Leakage corrected embedding êz .
T ← {e(0)z };
for k ← 1 to K do

Compute ∆̃kz according to (9);
According to (7), compute Âk

z,∗E(0) =

|N(z)|/|N̂ (z)|
(
Ak
z,∗E(0) −

(
Azz̄Ak−1

z,∗ E(0) + ∆̃kz
))

;

T ← T ∪ {Âk
z,∗E(0)};

Compute êz by taking the mean of all the elements in T ;
return êz ;

Table 1: Dataset statistics.

Dataset #User #Items #Interactions Density

Instant 63,884 10,664 174,527 2e-4
Instrument 54,272 33,030 161,105 9.8e-5
Yelp 31,668 38,048 1,561,406 1.3e-3
Gowalla 29,858 40,981 1,027,370 8.4e-4

3.2 Main Algorithm
Algorithm 1 depicts the procedure to efficiently evaluate the embed-
dings for z ∈ {u, t} in each triple (u, t,n) . We can repeatedly apply
the same procedure efficiently for all the triples in a mini-batch
since they can reuse the same input. Although (9) is dependent on
Âk−2
z,∗ E(0), we should already have it in earlier iteration at the time

of evaluating Âk
z,∗E(0).

4 EXPERIMENT
4.1 Experimental Settings
4.1.1 Dataset. We use datasets with two levels of graph density.
Statistics for all datasets are reported in Table 1. To demonstrate
the effectiveness of our technique on datasets with low average
node degree, we use Amazon Instant Video (Instant) and Amazon
Musical Instrument datasets (Instrument) [7, 18]1. We filter out
interactions with a rating of less than four and follow a 2-core
setting for these datasets, i.e. we only retain user and item nodes
with at least two interactions. Under this setting, we can have at
least one training and one testing interaction for node. We split the
interactions into train/valid/test sets with a 0.7/0.1/0.2 split ratio.
We ensure that our train and test split have at least one interaction
for each node.

To test the applicability of our technique on the widely used
10-core setting in literature, we use Yelp2018 (Yelp) and Gowalla
datasets provided by authors of LightGCN2. As the authors do
not provide a validation set, we further split the training data into
train/valid sets with a 0.9/0.1 split ratio.

1http://jmcauley.ucsd.edu/data/amazon/links.html
2https://github.com/kuandeng/LightGCN/tree/master/Data

http://jmcauley.ucsd.edu/data/amazon/links.html
https://github.com/kuandeng/LightGCN/tree/master/Data

Table 2: Mean results of recall@20, nDCG@20, and time per epoch (T) in seconds. Bold represent the best and underline
represents the second best. Vanila is not considered in the ranking for time.

Method Instant Instrument Yelp Gowalla

Recall nDCG T(s) Recall nDCG T(s) Recall nDCG T(s) Recall nDCG T(s)

2
La
ye
rs

Vanilla 0.1698 0.0805 2.96 0.0392 0.0187 2.75 0.0577 0.0467 110.13 0.1623 0.1375 82.65
DropEdge 0.1656 0.0776 4.43 0.0465 0.0216 4.57 0.0581 0.0469 259.93 0.1622 0.1375 130.01
S&R 0.2202 0.1047 5.23 0.0541 0.0257 4.62 0.0576 0.0466 444.94 0.1628 0.1379 259.49
EFLEC 0.2207 0.1029 3.11 0.0546 0.0260 3.06 0.0583 0.0469 122.75 0.1630 0.1382 72.88

3
La
ye
rs

Vanilla 0.1776 0.0874 4.52 0.0471 0.0216 3.55 0.0604 0.0489 136.23 0.1677 0.1414 67.15
DropEdge 0.1806 0.0825 3.65 0.0521 0.0241 3.70 0.0603 0.0487 219.73 0.1690 0.1422 105.28
S&R 0.2160 0.1059 5.72 0.0574 0.0270 5.18 0.0600 0.0485 465.03 0.1687 0.1420 190.42
EFLEC 0.2155 0.1046 4.56 0.0573 0.0271 4.15 0.0602 0.0485 145.11 0.1689 0.1422 71.06

Table 3: Mini-batch size studies on Instant dataset. R=Recall,
N=nDCG, FB=Full-batch.

Batch size Method R@20 R@10 N@20 N@10

FB/4
Vanilla 0.1546 0.1132 0.0729 0.0624
S&R 0.2047 0.1513 0.0963 0.0827
EFLEC 0.2126 0.1529 0.0963 0.0811

FB/2
Vanilla 0.1553 0.1104 0.0720 0.0606
S&R 0.1962 0.1425 0.0930 0.0793
EFLEC 0.2028 0.1448 0.0948 0.0799

FB
Vanilla 0.1437 0.1006 0.0652 0.0542
S&R 0.1116 0.0740 0.0475 0.0379
EFLEC 0.1941 0.1351 0.0871 0.0720

4.1.2 Hyper-parameters. We follow the exact setting as LightGCN.
Embedding size is set to 64, all the parameters are initialized with
Xavier initialization [4] and we use Adam [11] optimizer. We use
symmetric normalization without self-edges.

For all datasets we use 1e-3 learning rate and weight decay factor
λ = 1e − 4. For Instant and Instrument, we use a mini-batch size of
2048. For Yelp and Gowalla, we use a mini-batch size of 1024. We
run experiments for 500 epochs and use the checkpoint with the
best validation performance for computing test results.

4.1.3 Baselines. We compare our method to following baselines:
• Vanilla. LigthGCN model without any modification.
• DropEdge [21]. Originally proposed for node classification,
this method randomly drops edges from the training graph
at the beginning of each training epoch. After edge dropping,
the adjacency matrix is re-normalized. We set the dropout
probability to 0.5.
• Sample-and-remove (S&R). All the edges that appear in the
mini-batch of triples are removed from the graph before
executing the mini-batch. After removing the edges, the
modified training adjacency matrix is re-normalized.

4.2 Main Results
Table 2 compares baseline methods with EFLEC on all the datasets
for two-layer and three-layer LightGCN models and presents the

mean of 5 trials. We can observe that all the methods addressing fea-
ture leakage problems demonstrate an equal or better performance
than the vanilla counterpart. For Instant and Instrument, the data
sets with lower average node degrees, we observe that S&R and
EFLEC significantly improve over Vanilla. Specifically, a two-layer
model achieves 30%/39% gain with Recall@20 metric. For Yelp and
Gowalla, S&R and EFLEC get only marginal or no improvement
over Vanilla. The high average node degrees make the feature leak-
age problem less severe since the proxy label information occupies
much less weight in the final embeddings. Overall, our EFLEC al-
gorithm achieves a slight but stable improvement over S&R on the
two-layer models since it fully utilizes the graph information. On
the three-layer models, their performance is similar to each other.

All the leakage correction algorithms run slower than the vanilla.
S&R is the most time-consuming due to the time consuming proce-
dure of reconstructing the adjacent matrix and normalizing it on
every mini-batch. Our EFLEC is much more efficient than S&R since
it mainly relies on the original node embedding from LightGCN,
and it does not need to reconstruct the adjacent matrix. DropEdge
is efficient, but its performance on recall is not as good as S&R and
EFLEC, especially on Instant and Instrument data sets.

4.3 Extended Studies
Although S&R achieves a slightly worse but comparable model
performance against our EFLEC under the current setting, we argue
that EFLEC has more advantage when training the model under
larger mini-batch sizes. We train models with mini-batch of size
{Full-batch, Full-batch/2, Full-batch/4}. Other hyper-parameters are
kept the same as our main results. As observed in Table 3, the
performance of the S&R method is halved in the extreme Full-batch
setting. Whereas EFLEC is less affected as mini-batch size increases
since EFLEC always utilizes the complete graph information while
the aggressive S&Rmethod drops too much information under large
mini-batch sizes.

5 CONCLUSION
This work studies the feature leakage problem on GNN based rec-
ommendation systems. We propose EFLEC, an efficient algorithm
that corrects the feature leakage problem. Empirical results demon-
strate that our algorithm can improve the performance on sparse

datasets while the computation time is close to the vanilla algo-
rithm without correction. Although we developed our technique
for LightGCN, the algebraic idea can be extended to a wide variety
of GNN based models, and we would like to discuss it in future
works.

REFERENCES
[1] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-

tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).
[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral

networks and locally connected networks on graphs. In Proc. Int. Conf. Learning
Representations.

[3] Soumen Chakrabarti, Earl Cox, Eibe Frank, Ralf Hartmut Güting, Jiawei Han,
Xia Jiang, Micheline Kamber, Sam S Lightstone, Thomas P Nadeau, Richard E
Neapolitan, et al. 2008. Data mining: know it all. Morgan Kaufmann.

[4] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 249–256.

[5] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In
Proc. Int. Joint Conf. Artificial Intelligence.

[6] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems,
Vol. 2017-Decem. 1025–1035. arXiv:1706.02216

[7] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Vi-
sual Evolution of Fashion Trends with One-Class Collaborative Filtering. In
Proceedings of the 25th International Conference on World Wide Web (Mon-
tréal, Québec, Canada) (WWW ’16). International World Wide Web Confer-
ences Steering Committee, Republic and Canton of Geneva, CHE, 507–517.
https://doi.org/10.1145/2872427.2883037

[8] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[9] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[10] Thomas Hofmann. 2004. Latent semantic models for collaborative filtering. ACM
Trans. Information System (2004).

[11] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[12] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proc. Int. Conf. Learning Representations.

[13] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filteringmodel. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery
and Data Mining.

[14] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. IEEE Computer (2009).

[15] Chong Li, Kunyang Jia, Dan Shen, C.J. Richard Shi, and Hongxia Yang. 2019.
Hierarchical Representation Learning for Bipartite Graphs. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, 2873–
2879. https://doi.org/10.24963/ijcai.2019/398

[16] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature In-
teractions for Recommender Systems. In Proc. ACM SIGKDD Int. Conf. Knowledge
Discovery & Data Mining.

[17] Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang.
2019. Feature Generation by Convolutional Neural Network for Click-Through
Rate Prediction. In Proc. World Wide Web Conference.

[18] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-Based Recommendations on Styles and Substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Santiago, Chile) (SIGIR ’15). Association for Computing
Machinery, New York, NY, USA, 43–52. https://doi.org/10.1145/2766462.2767755

[19] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng
Guo, Yong Yu, and Xiuqiang He. 2018. Product-Based Neural Networks for User
Response Prediction over Multi-Field Categorical Data. ACM Trans. Inf. Syst. 37,
1, Article 5 (Oct. 2018), 35 pages. https://doi.org/10.1145/3233770

[20] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proc. Conf.
Uncertainty in Artificial Intelligence.

[21] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=Hkx1qkrKPr

[22] Jianing Sun, Wei Guo, Dengcheng Zhang, Yingxue Zhang, Florence Regol,
Yaochen Hu, Huifeng Guo, Ruiming Tang, Han Yuan, Xiuqiang He, et al. 2020. A
framework for recommending accurate and diverse items using bayesian graph
convolutional neural networks. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2030–2039.

[23] Jianing Sun, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Xiuqiang He,
ChenMa, andMark Coates. 2020. Neighbor Interaction Aware Graph Convolution
Networks for Recommendation. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval (Virtual
Event, China) (SIGIR ’20). Association for Computing Machinery, New York, NY,
USA, 1289–1298. https://doi.org/10.1145/3397271.3401123

[24] Jianing Sun, Yingxue Zhang, Chen Ma, Mark Coates, Huifeng Guo, Ruiming
Tang, and Xiuqiang He. 2019. Multi-graph convolution collaborative filtering. In
2019 IEEE International Conference on Data Mining (ICDM). IEEE, 1306–1311.

[25] Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia
Hu. 2020. Learning to Hash with Graph Neural Networks for Recommender
Systems. In Proceedings of The Web Conference 2020 (WWW ’20). Association for
Computing Machinery, New York, NY, USA, 1988–1998. https://doi.org/10.1145/
3366423.3380266

[26] Haoyu Wang, Defu Lian, and Yong Ge. 2019. Binarized Collaborative Filtering
with Distilling Graph Convolutional Network. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19. International
Joint Conferences on Artificial Intelligence Organization, 4802–4808. https:
//doi.org/10.24963/ijcai.2019/667

[27] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat Seng Chua. 2019.
Neural graph collaborative filtering. SIGIR 2019 - Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (2019), 165–174.

[28] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.
2020. Disentangled Graph Collaborative Filtering. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Virtual Event, China) (SIGIR ’20). Association for ComputingMachinery,
New York, NY, USA, 1001–1010. https://doi.org/10.1145/3397271.3401137

[29] Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, and Qingyong Li. 2020. Multi-
component graph convolutional collaborative filtering. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 6267–6274.

[30] Shiwen Wu, Wentao Zhang, Fei Sun, and Bin Cui. 2020. Graph Neural Networks
in Recommender Systems: A Survey. 37, 4 (2020). http://arxiv.org/abs/2011.02260

[31] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2018), 974–983.

[32] Jiani Zhang, Xingjian Shi, Shenglin Zhao, and Irwin King. 2019. STAR-GCN:
Stacked and reconstructed graph convolutional networks for recommender sys-
tems. IJCAI International Joint Conference on Artificial Intelligence 2019-Augus
(2019), 4264–4270. https://doi.org/10.24963/ijcai.2019/592

[33] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neu-
ral Networks. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf

http://arxiv.org/abs/1706.02216
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.24963/ijcai.2019/398
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/3233770
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.1145/3397271.3401123
https://doi.org/10.1145/3366423.3380266
https://doi.org/10.1145/3366423.3380266
https://doi.org/10.24963/ijcai.2019/667
https://doi.org/10.24963/ijcai.2019/667
https://doi.org/10.1145/3397271.3401137
http://arxiv.org/abs/2011.02260
https://doi.org/10.24963/ijcai.2019/592
https://proceedings.neurips.cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Recommender Systems with GNN Encoder
	2.2 Feature Leakage Problem
	2.3 Accurate Removal and Sample-and-remove Methods

	3 Proposed Algorithm
	3.1 Analysis
	3.2 Main Algorithm

	4 Experiment
	4.1 Experimental Settings
	4.2 Main Results
	4.3 Extended Studies

	5 Conclusion
	References

